Synchrony vs. Causality
in Asynchronous Petri Nets

Jens-Wolfhard Schicke
Institute for Programming and Reactive Systems, TU Braunsg, Germany
dr ahf | ow@nx. de

Kirstin Peters
School of EECS, TU Berlin, Germany
kirstin.peters@u-berlin.de

Ursula Goltz
Institute for Programming and Reactive Systems, TU Braunegy, Germany
goltz@ ps. cs.tu-bs. de

Given a synchronous system, we study the question whetkdoghaviour of that system can be
exhibited by a (non-trivially) distributed and hence adymmous implementation. In this paper
we show, by counterexample, that synchronous systems tangeneral be implemented in an
asynchronous fashion without either introducing an indimihplementation or changing the causal
structure of the system behaviour.
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1 Introduction

It would be desirable — from a programming standpoint — tagiesystems in a synchronous fashion,
yet reap the benefits of parallelism by means of an (ideallgraatically generated) asynchronous im-
plementation executed on multiple processing units inllghraMe consider the question under which
circumstances such an approach is applicable, or equilyalerhat restrictions must be placed on the
synchronous design in order that it may be simulated asgndusly.

We formalise this problem by means of Petri nets (Seéfioa &gmi-structural requirement (Section
[3) on Petri nets to enforce asynchrony in the implementatimil an equivalence relation (Sectidn 4)
on possible Petri net behaviours to decide whether a caediaglementation is indeed faithful to the
synchronous specification.

Countless equivalence relations for system behaviour &lagady been proposed. When comparing
the strictness of these equivalences, as done in [2] or fi&],exploring the resulting lattice, one finds
multiple “dimensions” of features along which such an egléxace may be more or less discriminating.
The most prominent one is the linear-time branching-tims,alenoting how well the decision structure
of a system is captured by the equivalence. Another dimensievant to this paper is that along which
the detail of the causal structure increases. On the firstadet two dimensions, we would at the very
least like to detect deadlocks introduced by the implentiamtaon the second one, at least a reduction
in concurrency due to the implementation. As every (nonat) implementation will introduce internal
T-transitions, a suitable equivalence must abstract framttas long as they do not allow a divergence.
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Figure 1: A fully reached, purkl, the problematic structure frorl[4]
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Figure 2: A repeated pud. A finite, 1-safe, undistributable net used as a running tsyerample.

[4] answers part of the question of distributed implemeititalfor a certain equivalence of this spec-
trum, namely step readiness equivalence. Step readinasslence is one of the weakest equivalences
that respects branching time, concurrency and divergems®rhe degree but abstracts from internal
actions. For this equivalence we derived an exact charsatien of asynchronously implementable
(“distributable™) Petri nets. The main difficulty in impleanting arbitrary Petri nets up to step readiness
equivalence is a structure called pie depicted in Figurell, where two parallel transitions arpair-
wise conflict with a common third. By [4] a synchronous netiiributable only if it contains no fully
reachable pur#l. The other direction needed for exactness has not beerspatliet, as the only as of
yet existing proofs utilises an infinite implementation.

Using the strictly weaker completed step trace equivalefi& proved any synchronous net to be
distributable. Comparing these two results and the giveslédmentation in the latter we made a very
interesting observation: We were unable to find an impleat@amt of a synchronous net with a fully
reachable pur& which did not introduce additional causal dependencies.

In this paper we show that this drawback holds for any semsibtoding of synchronous interactions,
i.e., itis a general phenomenon of encoding synchrony. \Aehréhat result by extending the puvieof
Figure[l into a repeated pul¢, depicted in Figurgl2. We thereby get a separation resultasino [4]
along a different, namely the causal, dimension of the specdf behavioural equivalences.

We introduce basic Petri net concepts in Sectibn 2, thenttumecounting the definition of dis-
tributability in Sectiori B. Afterwards we introduce comiglé pomset trace equivalence in Secfion 4,
justify it by means of illustrative examples, and use it ic8®[8 to prove the impossibility of imple-
menting general Petri nets while respecting causalityaliirsectior 6 concludes.
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2 Basic Notions

Most material in this section has been taken verbatim or mitimal adaptation fromi_[4] of [10].
Where dealing with tuples, we use ppr,, ... as the projection functions returning the first, second, ...
element respectively. We extend these functions to satsesliewise.

Definition 1. Let Act be a set ofisible actionsandt ¢ Act be aninvisible action
A labelled net(over Act) is a tupleN = (S T,F, Mo, /) where

Sis a set (ofplacey,

T is a set (otransitions,

e F CSxTUT x S(theflow relation),

Mg C S(theinitial marking) and

¢: T — ActU{t} (thelabelling functior).

A net is calledfinite iff SandT are finite.
Petri nets are depicted by drawing the places as circlesrahsitions as boxes containing the respective
label, and the flow relation as arrowar¢s) between them. When a Petri net represents a concurrent
system, a global state of such a system is givenmagking a set of places, the initial state beilty.
A marking is depicted by placing a datoken in each of its places. The dynamic behaviour of the
represented system is defined by describing the possiblesrmetween markings. A marking may
evolve into a markind/” when a nonempty set of transitio@sfires In that case, for each afs;t) € F
leading to a transitiom in G, a token moves along that arc froso t. Naturally, this can happen only
if all these tokens are available M in the first place. These tokens are consumed by the firingalbat
new tokens are created, namely one for every outgoing artrahsition inG. These end up in the places
at the end of those arcs. A problem occurs when as a resulingf @rmultiple tokens end up in the same
place. In that cas®l’ would not be a marking as defined above. In this paper weckeattention to nets
in which this never happens. Such nets are cdlksdfe Unfortunately, in order to formally define this
class of nets, we first need to correctly define the firing rutbeut assuming 1-safety. Below we do this
by forbidding the firing of sets of transitions when this ntiglit multiple tokens in the same place.

To help track causality throughout the evolution of a net,extend the usual notion of marking to
dependency markingwithin these dependency markings, every token is augrdenith the labels of
all transitions having causally contributed to its existenThe other basic Petri net notions presented
here have been extended in the same manner. While it migit sewe natural to annotate the causal
history of the tokens by a partial order, we only use a set imeoeder to keep the number of reachable
markings finite for finite nets (a property a later proof wiilise).

We denote the preset and postset of a net elemen8UT by *x:= {y| (y,X) € F} andx® :=
{y| (x,y) € F} respectively. These functions are extended to sets in tha nsanner, i.e?X := {y |
yeE*X, Xe X}
Definition 2. LetN = (S T,F,Mo,¢) be a net. LeM;,Mz C Sx P(Act).

G CT,G+# g, is called adependency step fromiNb My, M1[G)\My, iff

o all transitions contained i® are enabled, i.e.

vt e Gt Cpry(M) A (pry(Mp)\ ) Nt* =g,
¢ all transitions ofG are independent, that is not conflicting:

vtbue GtAutnu=gAt* Nu* =9,
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e causalities are extended by the labels of the firing tramsti

Mz = {p€My|pr(p) ¢ G}U

s({eOI\{thu J pra(p) | [t€Gset®

peMiApry(p)e°t

Applying pr; to a dependency marking results in the classical Petri rt@mof marking and similar for
the other notions introduced in this section. We will howawvainly employ the versions defined here
and drop the qualifier “dependency” most of the time. A toke) € M is Q-dependent iffQ C P and
Q-independent iPNQ = &.

To simplify the following argumentation we use some ablatons. L>N denotes a labelled step
on a single transition labelled. ==\ denotes a step oasurrounded by arbitrary-steps, i.e.=>n
abstracts front-steps.

Definition 3. LetN = (S T,F, Mo, ¢) be a labelled net.
We extend the labelling functiofhto (multi)sets element-wise.
—n € P(Sx P(Act)) x NA? x P(Sx P(Act)) is given by
M1 —25n Mo <5 3G C T.My [G)n Mo AA = £(G)
N € P(Sx P(Act)) x P(Sx P(Act)) is defined by
M; ——n Mz < Jte T.0(t) =T AM [{t})n M2
=N C P(Sx P(Act)) x Act* x P(Sx P(Act)) is defined by
My 2280 My o My~ 2 T 2 T T My
where—r>*N denotes the reflexive and transitive closure-6fy.
We omit the subscripl if clear from context.

We write M4 im for IM,. M1 im Mo, M, ﬁA%N for 7Ms.My im M, and similar for the other two
relations. LikewiseM1[G)y abbreviatesiM,.M;[G)yM2. A markingM; is said to beeachableiff there
is a sequence of labels € Act* such thatMp x {0} :U>N M1. The set of all reachable markings is
denoted byMo)y.

As said before, here we only want to consider 1-safe netsn&lby, we restrict ourselves tmntact-
free netswhere in every reachable markiMy € [Mo) for all t € T with *t C pry(M1)

(Pr(Mp)\ )Nt = 5.

For such nets, in Definitidd 2 we can just as well considerrssttont to be enabled iM iff *t C pr; (M),
and two transitions to be independent when *u= &.

3 Distributed Nets

After having introduced Petri nets in general, we still neetind a notion of such a net being distributed
before being able to answer the question of distributedemghtability. A straightforward approach is
to assign to each net elemenipbaation place sensible restrictions on arrows crossing locatanddys,
and restrict the sets of net elements being allowed to residbe same location.

We will regard locations as sequential execution units efuhderlying system, each one able to
execute at most one action during each step. This necesstitat no pair of transitions firing in the
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Figure 3: A centralised implementation of Figlte 2, locatimrders dotted.

same step can reside on the same location. Additionallgcédtions are indeed physically apart as their
name suggests, communication between them can only prasgadhronously.

We discussed a very similar notion of distribution [in [4], evice the following description and def-
inition of the present version have been derived from. Therakinsight from that paper is that the
synchronous removal of tokens from preplaces of a tramsii@ssential to the conflict resolution taking
place between multiple enabled transitions and that heaositions must reside on the same location
as their preplaces.

We model the association of locations to the places anditi@msin a netN = (ST,F,Mp,/) as a
functionD : SUT — Loc, with Loc a set of possible locations. We refer to suchrefion as alistribution
of N. Since the identity of the locations is irrelevant for ourgses, we can just as well abstract from
Loc and represerid by the equivalence relatiorp on SUT given byx =p y iff D(x) = D(y).

Definition 4. LetN = (S T,F, Mo, /) be a net.
Theconcurrency relation— C T2 is given byt — u < t £uA IM € [Mg) M[{t,u}). N is distributediff
it has a distributiorD such that

e VseSteT.set = t=ps,
et—u=t#pu
It is straightforward to give a semi-struct@aharacterisation of this class of nets:

Observation 1.
A net is distributed iff there is no sequengg...,t, of transitions withty — t, and*ti_1 N °t; £ 0 for
i=1...,n

4 Completed Pomset Trace

We now motivate the equivalence relation used for the retli@paper by means of highlighting some
possible shortcomings of implementations one would iivielif like to avoid.

When trying to implement a synchronous Petri net by a distieith one, one of the easiest approaches
is central serialisation of the entire original net by itnation of a single new place connected with loops
to every transition, thereby vacuously fulfilling the remument that no parallel transitions may reside
on the same location. This clearly loses parallelism. Westithte in Figuré]3 the result of applying
a slightly more intricate variant of this scheme, where pwasible step of the original still exists in

Imainly structural, but with a reachability side-condition
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Figure 4: A locally deadlocking implementation of Figuidd;ation borders dotted.

the implementation, to the repeated pile Nonetheless, this approach is intuitively not scalabte, a
all decisions made concurrently in the original net are nosdenin sequence. In particular, the parts
of the net firinga were completely independent of those parts firgrig the specification, while being
connected trough the central place in the implementatioch ®ew dependencies can be detected if the
causal dependencies between events are included in theidnatah description of a net. Apart from the
obvious implications for scalability, if a Petri net is usasl an abstract description of a more concrete
system, a new dependency might enable interactions beterent parts of the system the designer
did not take into account. Hence we would like to disallowrsacstrategy by means of the equivalence
between specification and implementation.

No such causalities are introduced by the implementatioRigare[4. There however, one of the
cycles ofa’s or ¢'s may spontaneously decide to commit to thaction and wait until the other does
likewise, resulting in what is essentially a local deadloClompared to the original net, wheaestayed
enabled untib was fired, such behaviour is new. Trying to resolve this deadby adding a-transition
in the reverse direction would introduce a diverging corapah not present in the original net.

All these deviations from the original behaviour can elelyaoe captured by the causal equivalence
from [10], called completed pomset trace equivalence. titreks the pomset trace equivalence_of [8] as
to detect local deadlocks, which can be regarded as unjasuggns in the sense 6f|[9].

Pomset trace equivalence is obtained by unrolling a Petintea process as defined hy [7]. Such a
process can be understood to be an account of one particajatovelecide all conflicts which occurred
while proceeding from one marking to the next. The behavidtine net is hence a set of these processes,
covering all possible ways to decide conflicts.

Unrolling a netN intuitively proceeds as follows: The initially marked péscofN are copied into a
new net/ and their correspondence to the original places recordadnappingr. Then, whenever in
N a transitiort is fired, this is replayed i’ by a new transition connected to places corresponding by
to the original preplaces @fand which are not yet connected to any other post-transifonew place
of # is created for every token producedtbhyAgain all correspondences are recordedrifevery place
of # has thus at most one post-transition. If it has none, thiseptapresents a token currently being
placed on the corresponding original place.

As a shorthand notation to gather these places, we intratieeadof a net.

Definition 5. LetN = (S T,F, Mo, /) be a labelled net.
Theendof the net is defined a¥° := {s€ S| s* = &}.

Definition 6.
A pair 7 = (//, m) is aprocesf a netN = (S, T,F, Mg, ) iff
o V= (r7,%, Mo, /) is anet, satisfying
—Vse £ || <1> | |ASE Mo °Ss=0
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— Fis acyclic, i.evVxe FUT.(x,X) 7T,
where7 T is the transitive closure df(t,u) | #(t,u) > O},

— and{t| (t,u) € 7} is finite for allu € 7.

e 11:YUJ — SUT is a function withri(#) C Sandm(7) C T, satisfying
—-seMye |m (s nap|=1foralse S
— 1is injective on/g,
- Vte7,seSF(s, n(t)é =|m ()Nt AF(m(t),s) = |mi(s) Nt
— Yt eT.4t) = ¢(m(t))

P is calledfinite if /# is finite.

,and

P is maximaliff 7(/°) +—N. The set of all maximal processes of a Neis denoted byMP(N).
To disambiguate between a not-yet-occurred firing of a itiansa and the impossibility of firing aa,
we restrict the set of processes relevant for the behavidasaription to maximal processes. We thereby
obtain a just semantics in the sensel of [9], i.e. a transiiibith remained enabled infinitely long must
ultimately fire.

To abstract from the-actions introduced in an implementation, we extract frbm thaximal pro-
cesses the causal structure between the fired visible ewetiie form of a partially ordered multiset
(pomsel. Formally, a pomset is an isomorphism class of a partiaitieced multiset of action labels.

Definition 7.
A labelled partial orderis a structurgV, T, <,l) where

e V is a set (olvertices,
e T is a set (oflabels,
e < CV xV isapartial order relation and
e | :V — T (thelabelling function.
Two labelled partial orders= (V, T, <,l) andd’ = (V/, T, <’,1") areisomorphic o = 0/, iff there exist
a bijection¢ : V — V'’ such that
e YeVlI(v)=I'(¢(v)) and
e VuveVu<ve @(u) < @(v).
Definition 8. Leto= (V, T, <,l) be a partial order.
Thepomsebf ois its isomorphism clas®] := {0’ | o= 0'}.
By hiding the unobservable transitions of a process, we@gawmset which describes causality relations
of all participating visible transitions.

Definition 9. Let? = ((*,7,7, Mo, t), ) be a process.
LetOo:={t €7 | At) # 1}, i.e. the visible transitions of the process. Tigble pomsebf 7 is the
pomset P(P) := [(0,Act,7* N0 x J,£N (0 x Act))] where#* is the transitive and reflexive closure
of the flow relationr.

MVP(N) :={VP(?) | 7€ MP(N)} is the set of pomsets of all maximal processeblof
Using this notion we can now define completed pomset traceaguce.

Definition 10.
Two netsN andN’ arecompleted pomset trace equivaleNt~cpr N’, iff MVP (N) = MVP(N’).
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Figure 5: An infinite implementation of Figuté 2, construttey taking every maximal process and
initially choosing one, location borders dotted.

5 Impossibility

As completed pomset trace equivalence is a very lineard¢iguivalence, it disregards the decision struc-
ture of a system and an implementation like the one of Figuwehich simply provides a separate branch
for each possible maximal process of the original net, wanddully satisfactory. In practice though,
such an infinite implementation is unwieldy to say the ledtiowever infinite implementations are
ruled out, our main result shows that no valid implemenitatibthe repeated pufd of Figure[2 exists.

Before we consider this main theorem of the paper, let userdrate on two auxiliary lemmata.
The first states that the careful introduction of-éransition before an arbitrary transition of a net, as
described below, does not significantly influence the ptigmof that net.

Lemmal. LetN= (S T,F,Mo,¢) be afinite, 1-safe, distributed net with the distributiondtion D. Let
teT.
The net N= (S,T’,F’, Mo, ¢") with

e S=SU{s},

e T'=TuU {Tt},

e F/=(F\(Sx*t)U{(s,1v)|set}u{(n,s),(s,t)}, and

° gl(x): T ifX:Tt-

¢(x) otherwise

is finite, 1-safe, distributed and completed pomset tracgvetent to N.
Proof. (Sketch)
N’ is finite as only two new elements were introduced.

N’ is completed pomset trace equivalenf\o Given a proces$§/, ) of N, a process oN’ can be

constructed by refining in every transitionu in the same manner agu) was inN. For the reverse
direction, note that in every maximal processedNofr(u) =t — m(*u) = {s} A11(*s) = {®}. By

2While ¢ andlook nearly identical, the authors see no problem in thaemthe close correspondence.
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fusingu, *u, and**uinto a single transitiow wheneveri(u) =t and setting the process mappingvab
t, a maximal process &’ can be transformed into a maximal processlof
For the same reasoN; is also 1-safe.

D(t) ifx=sVx=rt
D(x) otherwise
onD(t) =D'(1;). D'(s) = D(t) = D'(t). Hence all transitions are on the same location as theitgzep.
No new parallelism is introduced, as a parallel firing of eith or t with some other transition can
only occur ift andu could already fire in parallel iN. O

N’ is distributed with the distribution functioB’(x) := { . The places int; are

Next we show, that if a marking is reached twice during an etien, the dependencies of all tokens
consumed and produced by a transition firing in such a cyeleaual.

Lemma 2. Let N= (ST,F,Mo,¢) be a finite, 1-safe net. Le{ts1,...,te_1,tc € T be a sequence of
transitions leading from a reachable marking,Mcto the same, i.e. Mse—> - -+ —» Mpase
Then every;tproduced tokens that were dependent on the same labels txkéres on its preplaces.

Proof. Assume the opposite, i.e. there ig;dor s < i < e such thattj consumed ariL-independent
token from one of its preplaces (for sorheC Act), but produced nd.-independent tokens. Thls
independent token needs to be replaced to again fdggla However the replacement token needs to
beL-independent as otherwise a dependency marking differemM,,sewould be reached. This token
can thus not depend on any of the tokens producegd by it would then not be-independent. In other
words, had; not fired, a newL-independent token could also have been produced on ittapes, i.e.

N would not be 1-safe, violating the assumptions. Hence nb swan be fired, or equivalently, evety
produced tokens that were dependent on the same labels tagéms on its preplaces (which hence all
have the same dependencies). O

We will now show that, given an arbitrary finite, 1-safe nets not possible in general to find a finite, 1-
safe, and distributed net which is completed pomset trag®agnt to the original. As a counterexample,
consider the repeated puwk of Figure[2. It is a simple net allowing to perform severahsiions ofa
andc in parallel, and terminating with a single transitibn The main argument of the following proof
proceeds as follows: To perform an arbitrary numbea ahdc-transitions within a finite net there has
to be a loop. To terminate with the process has to escape from that loop by disabling akitrans
leading toa or c. Therefore either a single token is consumed that is deperadea as well as orc,

or two different tokens — ona-dependent and onedependent — are consumed. In the first case an
additional iteration of the loop results in an additionalisa dependency, i.e., in a causal dependency
betweera andc. In the second case the net is not distributed in the sensefafifion[4.

Theorem 5.1.
Itis in general impossible to find for a finite, 1-safe net dritisited, completed pomset trace equivalent,
finite, 1-safe net.

Proof. Via the counterexample given in Figurk 2. Suppose a finitgfé; distributed né¥imp, which
is completed pomset trace equivalent to the net of Figlred2idvexist. By refining everyp-labelled
transition inNim i into two transitions in the manner of Lemia 1, a newi¥et (S T, F, Mo, ¢) is derived.
By Lemmall this new net is finite, 1-safe, distributed and deted pomset trace equivalent to the net
in Figure[2 sincéNim) is.

N has|S places and 3 different labels, every place can hold eitheéoken, or a token dependent
on any possible combination of the three labels. SiNdse finite so is|S§. HenceN has at most §
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reachable dependency markings. bet= 9. N is able to fire(ac)™b without any step containing
more than a single transition since the net of Fidure 2 is &edtwo are assumed to be completed
pomset trace equivalent. L&,G,,...Gp be the steps fired while doing s¢Gi| = 1 for alli. In the
course of firing that sequence, at least one dependency mgaiskibbound to be reached twice. Of all
those dependency markings which occur twice, we take theoooerring last while firingac)™b and
call it Mpase Let Gs,Gs.1,...,Ge 1,Ge be a sequence of steps between two occurrencéh,Qf, i.e.

G Ge Gn
Mo x {@} =52 Mbase—> - — Mpase' -+ —>.

Using Lemmd R the transitions of the stefsto Ge can be partitioned into subsetg based on
the dependencies of the tokens they produced and consumsetTA includes all transitions produc-
ing X-dependent, Act X- mdependent tokens. By firinGsN Tyay, Gsi1M Tyay, - - -, Ge N Tray (Skipping
empty steps) repeatedlylbase:> By firing Gs N Ty, Gs11 Mgy, - - -, GeN Ty (Skipping empty steps)
repeatedIyMbase:>

We now search for the marking, where the decision tolfiemade.

Assume a reachable markiiy’ of N with M =- LTV ;é) this holds for allM” reachable from
M” sincec cannot be enabled using tokens produced by a transitiofiddteeor b. Otherwise there
would exist a pomsets ™ in which acis causally dependent on aror b. Such a pomset however does
not exist for the net of Figuiid 2 thereby violating the asstiompof completed pomset trace equivalence.
If howeverc is not re-enabled aftevl” a maximal process including finitely manybut infinitely many
a’s can be produced also leading to a pomset not present irethef frigured 2. The same argument can
be applied with the roles afandc reversed, hencel” = iff M” == il

We start fromMpase and start to fire the stepSs, Gs:1, .- .,Gn untll a™ cannot be fired any more
for the first time. This step always exists as aftano furthera’s or c's may be fired. Call the single
transition in that step) The marklng right before that transition fired, we ddl] the one right after it
M’. Not only M = but alsoM = and not onlyM’ 7% but alsoM’ 75 as bothM andM’ are reachable
markings.

ty is not itself labelled, as the refined net hasraransition before the, and once a token resides on
the intermediate place, retransitions can be fired any more, as otherwise a pomseievams which
is not a causal predecessor tb would be produced, again not existing for the net of Figure 2.

To disable the traca™, the transitiort, needed to consume a token.tdthad not fired, som&; N
Tia), S<i < ecould have consumed that token, hence that token muatdependentc-independent.
Similarly, t, must have consumed a token which could have lef'td@ his token needs to liedependent,
a-independent. Hencg has at least two preplaces, which in turn are also preplacésa different
transitions, call thent, andt., which then lead t@™ and c™ respectlveIE As they have common
preplaceds, t, andt; are on the same location.

FromM the net can fir@™ consuming onlya-dependentc-independent tokens. It can also fa8
consuming onlyc-dependenta-independent tokens.

Hence there is a sequence of steps leading fkbrito a marking wherd, is enabled, yet onlga-
dependentc-independent tokens have been removed or added. Similehe tis a firing sequence
leading fromM to a marking wherd; is enabled, yet onlg-dependenta-independent tokens have
been removed or added. As they change disjunct sets of tokeese two firing sequences can be
concatenated, thereby leading to a marking wheesdt; are concurrently enabled, yet they are on the
same location, thereby violating the implementation regjuents. O

Note that the self-loops of the counterexample are notatitd the success of the proof.

3The removal of the token leading &' and the one leading " must indeed be done by a single transitigms only a
single transition was fired betwed&handM’ and both traces were possibleNhbut impossible inv’.
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This paper only considered 1-safe nets as possible implati@ms. We conjecture however, that the
proof of Theoreni 5]1 can be extended to non-safe nets asasdtipm a place where tokens of different
dependency mix, a transition can always choose the mostadept token. In particular a transition
intended to produce independent tokens cannot have sucta at a preplace. Hence every part of
the net providing independent tokens can do so without dépgron firings of labelled transitions.
The number of independent tokens produced on a place whaigeleld transition consumes them is
thus either finite over every run of the system, or unboundet evithout any labelled transition ever
firing. In both cases that place is unsuitable for disablipgtzntially infinitely often occurring loop. If
only finitely many tokens are produced, the loop can no lohggpen infinitely often, if an unbounded
number of tokens can be produced, no disabling can be geadnt

6 Conclusion

A review of existing literature in the related area can bentbin [4], nonetheless we wish to refer the
reader also td 5], where instead of requiring the equivaenetween specification and implementa-
tion to preserve parallelism, more structural resemblaridbe implementation to the specification is
required.

A paper not covered earlier isl[1], where an algorithm for slitomated synthesis of distributed
implementations of protocols is presented. The notion sifithuted Petri nets employed therein differs
from ours by not requiring formally that no parallelism magcor on the same location. The authors
however finally generate a finite automaton for each locatagain serialising all actions on a single lo-
cation. In contrast to the present paper and simildrito ffe] authors start with a user-supplied map from
events to locations, and answer the concrete problem ohehé#tat specific distribution is realisable or
not instead of requiring the maximal possible parallelisrbé realised.

Comparing the proof of Theorem 5.1 with the prooflin [4] we eve that the counterexample in
both proofs is based on two conflicts overlapping by a tramsiti.e., on what is therein called a fully
reachable pur®. In the synchronous setting such an overlapping conflialiges by the simultaneous
removal of tokens on different places in the preset. In am@synous setting these two conflicts have
to be distributed over at least two locations. Intuitivalye problem with such a distribution is that it
prevents the simultaneously solution of the original aygping conflicts. Instead these two conflicts
have to be solved in some order. This order must, as donenwtitlei encoding presented in [10], be
enforced by the encoding, leading to additional causal midgrcies.

The present paper adds another patch to the emerging map ségfaration plane between those
equivalences from the spectrum of behavioural equivakemgech allow asynchronous implementation
in general and those which do not. [n [4] we showed that Pets nannot in general be implemented
up to step readiness equivalence, thereby giving an upperddfor distributability along the branching-
time dimension. The present paper provided an upper bourtdeodimension of causality. We did not
formally proof that this bound is tight, and one might imagihat a behavioural equivalence closer to
the notion of dependency markings exists. However, we weable to find an equivalence which is
sensitive to the local deadlock problem outlined in Figuend is not based on processes. The imple-
mentation of[[10] can serve as a lower bound on both dimeassibbriwould be interesting to answer the
implementability question for systems which feature nedited time, thereby enabling timeout detec-
tion and simultaneous action without co-locality.

That the observed effects are not peculiarities of the Petrimodel of systems but a reality of
asynchronous systems in general is underlined by the egistef an companion paper| [6], giving a
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result similar to the one achieved here in the setting of fymehronoust-calculus.

A closer look on the proof in [6] reveals that this proof degepn counterexamples that are so called
symmetric networks including mixed choices in a similar vaayour result depends on counterexamples
including a pureM. A symmetric network — for instanc@ =a+b+b.v | b+a+a.v in the second
part of the proof — consists of some parallel processes iffiat dnly due to some permutation of names.
In combination with mixed choice, i.e., a choice betweemntrgs well as output capabilities, symmetric
networks result in conflicting steps on different links. lderin both cases the counterexamples refer to
some situation in the synchronous setting in which theravapedistinct but conflicting steps. To solve
this conflict two simultaneous activities are necessary eaige of Petri nets two tokens are removed
simultaneously and in case of tmecalculus two sums are reduced simultaneously in one stefhel
asynchronous setting this simultaneous solution has teehelised by some kind of lock. It blocks
the enabling of the asynchronous implementations of sosiees, such that no two implementations
of conflicting source steps are enabled concurrently. 1h bmimalisms, Petri nets and thecalculus,
it is this temporally blocking of the implementation of soersteps, necessary to avoid deadlock or
divergence in case of conflicting source steps, that leaddddional causal dependencies.

Apart from this apparent similarity however, much of theatiein between the two results remains
mysterious to us. To begin with, the requirements imposeBeatrn net implementations arrdcalculus
implementations take wildly different forms. Additionglin contrast to ther-calculus result, the present
paper connected implementation and original by means civietr only without any reference to the
system structure. The-calculus result on the other hand had no need to give spatgaition to infinite
implementations. Finally, we also have no explanation foyhe difference in expressive power (the
ri-calculus is turing-complete) should not make a differefaceresults such as this. We hope to answer
some of these questions in future work.

The question up to which behavioural equivalegeaeralPetri nets are implementable can also be
reversed into the question what properties or substrusinfra Petri net make it unimplementable. One
problematic structure for causal equivalences, identifiethis paper, is the net of Figuké 2, possibly
with a more elaborate route fromandc back to the marking enabling all three transitions. We did no
prove that no fundamentally different problematic struesuexists, but we conjecture that this is indeed
the case.
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