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Abstract

We investigate classes of systems based on different interaction patterns with the aim of achieving dis-
tributability. As our system model we use Petri nets. In Petri nets, an inherent concept of simultaneity
is built in, since when a transition has more than one preplace, it can be crucial that tokens are removed
instantaneously. When modelling a system which is intended to be implemented in a distributed way by a
Petri net, this built-in concept of synchronous interaction may be problematic. To investigate the problem
we assume that removing tokens from places can no longer be considered as instantaneous. We model this
by inserting silent (unobservable) transitions between transitions and their preplaces. We investigate three
different patterns for modelling this type of asynchronous interaction. Full asynchrony assumes that every
removal of a token from a place is time consuming. For symmetric asynchrony, tokens are only removed
slowly in case of backward branched transitions, hence where the concept of simultaneous removal actu-
ally occurs. Finally we consider a more intricate pattern by allowing to remove tokens from preplaces of
backward branched transitions asynchronously in sequence (asymmetric asynchrony).
We investigate the effect of these different transformations of instantaneous interaction into asynchronous
interaction patterns by comparing the behaviours of nets before and after insertion of the silent transitions.
We exhibit for which classes of Petri nets we obtain equivalent behaviour with respect to failures equivalence.
It turns out that the resulting hierarchy of Petri net classes can be described by semi-structural properties.
In case of full asynchrony and symmetric asynchrony, we obtain precise characterisations; for asymmetric
asynchrony we obtain lower and upper bounds.
We briefly comment on possible applications of our results to Message Sequence Charts.
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1 Introduction

In this paper, we investigate classes of systems based on different asynchronous in-

teraction patterns with the aim of achieving distributability, i.e. the possibility to

execute a system on spatially distributed locations, which do not share a common
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Fig. 1. Transformation to the symmetrically asynchronous implementation

clock. As our system model we use Petri nets. The main reason for this choice

is the detailed way in which a Petri net represents a concurrent system, including

the interaction between the components it may consist of. In an interleaving based

model of concurrency such as labelled transition systems modulo bisimulation se-

mantics, a system representation as such cannot be said to display synchronous or

asynchronous interaction; at best these are properties of composition operators, or

communication primitives, defined in terms of such a model. A Petri net on the

other hand displays enough detail of a concurrent system to make the presence

of synchronous communication discernible. This makes it possible to study asyn-

chronous communication without digressing to the realm of composition operators.

In a Petri net, a transition interacts with its preplaces by consuming tokens. An

inherent concept of simultaneity is built in, since when a transition has more than

one preplace, it can be crucial that tokens are removed instantaneously, depending

on the surrounding structure or—more elaborately—the behaviour of the net.

When modelling a distributed system by a Petri net, this built-in concept of syn-

chronous interaction may become problematic. Assume a transition t on a location l

models an activity involving another location l′, for example by receiving a message.

This can be modelled by a preplace s of t such that s and t are situated in different

locations. We assume that taking a token can in this situation not be considered

as instantaneous; rather the interaction between s and t takes time. We model this

effect by inserting silent (unobservable) transitions between transitions and their

preplaces. We call the effect of such a transformation of a net N an asynchronous

implementation of N .

An example of such an implementation is shown in Figure 1. Note that a can be

disabled in the implementation before any visible behaviour has taken place. This

difference will cause non-equivalence between the original and the implementation

under branching time equivalences.

Our asynchronous implementation allows a token to start its journey from a place

to a transition even when not all preplaces of the transition contain a token. This

design decision is motivated by the observation that it is fundamentally impossible

to check in an asynchronous way whether all preplaces of a transition are marked—it

could be that a token moves back and forth between two such places.

We investigate different interaction patterns for the asynchronous implementation

of nets. The simplest pattern (full asynchrony) assumes that every removal of a to-

ken from a place is time consuming. For the next pattern (symmetric asynchrony),

tokens are only removed slowly when they are consumed by a backward branched

transition, hence where the concept of simultaneous removal actually occurs. Fi-

2



Symmetric and Asymmetric Asynchronous Interaction

nally we consider a more intricate pattern by allowing to remove tokens from pre-

places of backward branched transitions asynchronously in sequence (asymmetric

asynchrony).

Given a choice of interaction pattern, we call a net N asynchronous when there is

no essential behavioural difference between N and its asynchronous implementation

I(N). In order to formally define this concept, we wish to compare the behaviours

of N and I(N) using a semantic equivalence that fully preserves branching time,

causality and their interplay, whilst of course abstracting from silent transitions.

By choosing the most discriminating equivalence possible, we obtain the smallest

possible class of asynchronous nets, thus excluding nets that might be classified as

asynchronous merely because a less discriminating equivalence would fail to see the

differences between such a net and its asynchronous implementation. To simplify

the exposition, here we merely compare the behaviours of N and I(N) up to failures

equivalence [6]. This interleaving equivalence abstracts from causality and respects

branching time only to some degree. However, we conjecture that our results are in

fact largely independent of this choice and that more discriminating equivalences,

such as the history preserving ST-bisimulation of [21], would yield the same classes

of asynchronous nets. Using a linear time equivalence would give rise to larger

classes; this possibility is investigated in [19].

Thus we investigate the effect of our three transformations of instantaneous inter-

action into asynchronous interaction patterns by comparing the behaviours of nets

before and after insertion of the silent transitions up to failures equivalence. We

show that in the case of full asynchrony, we obtain equivalent behaviour exactly for

conflict-free Petri nets. Further we establish that symmetric asynchrony is a valid

concept for N-free Petri nets and asymmetric asynchrony for M-free Petri nets, where

N and M stand for certain structural properties; the reachability of such structures

is crucial. For symmetric asynchrony we obtain a precise characterisation of the

class of nets which is asynchronously implementable. For asymmetric asynchrony

we obtain lower and upper bounds.

In the concluding section, we discuss the use of our results for Message Sequence

Charts, as an example how they may be useful for other models than Petri nets.

When interpreting basic Message Sequence Chart as Petri nets, the resulting Petri

nets lie within the class of conflict-free and hence N-free Petri nets. The more

expressive classes give insights in the effect of choices in non-basic MSCs.

This is an extended abstract; for sake of brevity most proofs are omitted. They are

contained in the full version of this paper [8], as well as in [19].

The paper is structured as follows. In Section 2 we establish the necessary basic

notions. In Section 3 we introduce the fully asynchronous transformation and give

a semi-structural characterisation of the resulting net class. In Section 4 we re-

peat those steps for the symmetrically asynchronous transformation. Furthermore

we describe how the resulting net class relates to the classes of free-choice and ex-

tended free choice nets. In Section 5 we introduce the asymmetrically asynchronous

transformation. We give semi-structural upper and lower bounds for the resulting

net class and relate it to simple and extended simple nets. In the conclusion in

Section 6 we compare our findings to similar results in the literature.
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2 Basic Notions

We consider here 1-safe net systems, i.e. places never carry more than one token, but

a transition can fire even if pre- and postset intersect. To represent unobservable

behaviour, which we use to model asynchrony, the set of transitions is partitioned

into observable and silent (unobservable) ones.

Definition 2.1

A net with silent transitions is a tuple N = (S,O,U, F,M0) where
• S is a set (of places),
• O is a set (of observable transitions),
• U is a set (of silent transitions),
• F ⊆ S × T ∪ T × S (the flow relation) with T := O ∪ U (transitions) and
• M0 ⊆ S (the initial marking).

Petri nets are depicted by drawing the places as circles, the transitions as boxes,

and the flow relation as arrows (arcs) between them. When a Petri net represents

a concurrent system, a global state of such a system is given as a marking, a set of

places, the initial state being M0. A marking is depicted by placing a dot (token)

in each of its places. The dynamic behaviour of the represented system is defined

by describing the possible moves between markings. A marking M may evolve into

a marking M ′ when a nonempty set of transitions G fires. In that case, for each

arc (s, t) ∈ F leading to a transition t in G, a token moves along that arc from s to

t. Naturally, this can happen only if all these tokens are available in M in the first

place. These tokens are consumed by the firing, but also new tokens are created,

namely one for every outgoing arc of a transition in G. These end up in the places

at the end of those arcs. A problem occurs when as a result of firing G multiple

tokens end up in the same place. In that case M ′ would not be a marking as defined

above. In this paper we restrict attention to nets in which this never happens. Such

nets are called 1-safe. Unfortunately, in order to formally define this class of nets,

we first need to correctly define the firing rule without assuming 1-safety. Below we

do this by forbidding the firing of sets of transitions when this might put multiple

tokens in the same place.

Definition 2.2 Let N = (S,O,U, F,M0) be a net. Let M1,M2 ⊆ S.

We denote the preset and postset of a net element x by •x := {y | (y, x) ∈ F}
and x• := {y | (x, y) ∈ F} respectively. A nonempty set of transitions G ⊆
(O ∪ U), G 6= ∅, is called a step from M1 to M2, notation M1 [G〉N M2, iff

• all transitions contained in G are enabled, that is

∀t ∈ G. •t ⊆ M1 ∧ (M1 \
•t) ∩ t• = ∅ ,

• all transitions of G are independent, that is not conflicting :

∀t, u ∈ G, t 6= u. •t ∩ •u = ∅ ∧ t• ∩ u• = ∅ ,

• in M2 all tokens have been removed from the preplaces of G and new tokens
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have been inserted at the postplaces of G:

M2 =

(

M1 \
⋃

t∈G

•t

)

∪
⋃

t∈G

t• .

To simplify statements about possible behaviours of nets, we use some abbreviations.

Definition 2.3 Let N = (S,O,U, F,M0) be a net with silent transitions.

• −→N ⊆ P(S)×P(O)×P(S) is defined by M1
G

−→N M2 ⇔ G⊆O∧M1[G〉N M2

•
τ

−→N ⊆ P(S) × P(S) is defined by M1
τ

−→N M2 ⇔ ∃t ∈ U. M1 [{t}〉N M2

• =⇒N ⊆ P(S) × O∗ × P(S) is defined by M1
t1t2···tn=====⇒N M2 ⇔

M1
τ

−→
∗

N
{t1}
−→N

τ
−→

∗

N
{t2}
−→N

τ
−→

∗

N · · ·
τ

−→
∗

N
{tn}
−→N

τ
−→

∗

N M2

where
τ

−→
∗

N denotes the reflexive and transitive closure of
τ

−→N .

We write M1
G

−→N for ∃M2. M1
G
−→N M2, M1 X

G
−→N for ∄M2. M1

G
−→N M2 and

similar for the other two relations.

A marking M1 is said to be reachable iff there is a σ ∈ O∗ such that M0
σ

=⇒ M1.

The set of all reachable markings is denoted by [M0〉N .

We omit the subscript N if clear from context.

As said before, here we only want to consider 1-safe nets. Formally, we restrict

ourselves to contact-free nets where in every reachable marking M1 ∈ [M0〉 for all

t ∈ O ∪ U with •t ⊆ M1
(M1 \

•t) ∩ t• = ∅ .

For such nets, in Definition 2.2 we can just as well consider a transition t to be

enabled in M iff •t ⊆ M , and two transitions to be independent when •t ∩ •u = ∅.

In this paper we furthermore restrict attention to nets for which •t 6= ∅, and •t and

t• are finite for all t ∈ O ∪ U . We also require the initial marking M0 to be finite.

A consequence of these restrictions is that all reachable markings are finite, and it

can never happen that infinitely many independent transitions are enabled. Hence-

forth, we employ the name τ -nets for nets with silent transitions obeying the above

restrictions, and plain nets for τ -nets without silent transitions, i.e. with U = ∅.

Our nets with silent transitions can be regarded as special labelled nets, defined as

in Definition 2.1, but without the split of T into O and U , and instead equipped

with a labelling function ℓ : T → Act ∪{τ}, where Act is a set of visible actions and

τ 6∈ Act an invisible one. Nets with silent transitions correspond to labelled nets

in which no two different transitions are labelled by the same visible actions, which

can be formalised by taking ℓ(t) = t for t ∈ O and ℓ(t) = τ for t ∈ U .

To describe which nets are “asynchronous”, we will compare their behaviour to that

of their asynchronous implementations using a suitable equivalence relation. As ex-

plained in the introduction, we consider here branching time semantics. Technically,

we use failures equivalence, as defined below.

Definition 2.4 Let N = (S,O,U, F,M0) be a τ -net, σ ∈ O∗ and X ⊆ O.

<σ,X> is a failure pair of N iff

∃M1. M0
σ

=⇒ M1 ∧ M1 X

τ
−→ ∧∀t ∈ X. M1 X

{t}
−→ .
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N :

a b

FI(N) : τ

a

τ

b

Fig. 2. A net which is not failures equivalent to its fully asynchronous implementation

We define F (N) := {<σ,X> | <σ,X> is a failure pair of N}.
Two τ -nets N and N ′ are failures equivalent, N ≈F N ′, iff F (N) = F (N ′).

A τ -net N = (S,O,U, F,M0) is called divergence free iff there are no infinite chains

of markings M1
τ

−→ M2
τ

−→ · · · with M1 ∈ [M0〉.

3 Full Asynchrony

As explained in the introduction, we will examine in this paper different possible as-

sumptions of how asynchronous interaction between transitions and their preplaces

takes place. In this section, we start with the simple and intuitive assumption

that the removal of any token by a transition takes time. This is implemented by

inserting silent transitions between visible ones and their preplaces.

Definition 3.1 Let N = (S,O, ∅, F,M0) be a plain net.

The fully asynchronous implementation of N is defined as the net

FI(N) := (S ∪ Sτ , O,U ′, F ′,M0) with

Sτ := {st | t ∈ O, s ∈ •t} ,

U ′ := {ts | t ∈ O, s ∈ •t} and

F ′ := (F ∩ (O × S)) ∪ {(s, ts), (ts, st), (st, t) | t ∈ O, s ∈ •t} .

It is not hard to see that implementations of contact-free nets are contact-free and

implementations are always divergence free; in fact an implementation of a plain

net is always a divergence free τ -net.

Whereas in a plain net N for any sequence of observable transitions σ ∈ O∗ there is

at most one marking M with M0
σ

=⇒ M , in its fully asynchronous implementation

FI(N) there can be several such markings. These markings M ′ differ from M in

that some tokens may have wandered off into the added invisible transitions on the

incoming arcs of visible ones. As a consequence, a visible transition t that is enabled

in M need not be enabled in M ′—we say that in FI(N) t can be refused after σ.

This may occur for instance for the net N of Figure 2, namely with σ = ε (the

empty sequence), M the initial marking of N , M ′ the marking of FI(N) obtained

by firing the rightmost invisible transition, and t = a.

When this happens, we have < σ, {t} > ∈ F (FI(N)) \ F (N), so the nets N

and FI(N) are not failures equivalent. If, on the other hand, the wandering off of
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tokens into τ -transitions never disables a transition that would be enabled otherwise,

then there is no essential behavioural difference between N and FI(N), and they

are equivalent in any reasonable behavioural equivalence that abstracts from silent

transition firings. In that case, N could be called fully asynchronous.

Definition 3.2

The class of fully asynchronous nets respecting branching time equivalence is

defined as FA(B) := {N | FI(N) ≈F N}.

As for any plain net N we have F (N) ⊆ F (FI(N)) [8], the class of nets FA(B) can

equivalently be defined as FA(B) := {N | F (FI(N)) ⊆ F (N)}.

It turns out that there exists a quite structural characterisation of those nets which

are failures equivalent to their fully asynchronous implementation.

Definition 3.3

A plain net N = (S,O, ∅, F,M0) has a partially reachable conflict iff ∃t, u ∈ O.

t 6= u ∧ •t ∩ •u 6= ∅ and ∃M ∈ [M0〉.
•t ⊆ M ∨ •u ⊆ M .

The nets N of Figures 2 and 3, for instance, have a partially reachable conflict.

Theorem 3.4 A plain net N is in FA(B) iff N has no partially reachable conflict.

Proof. See [19] or [8]. 2

4 Symmetric Asynchrony

For investigating the next interaction pattern, we change our notion of asynchronous

implementation of a net. We only insert silent transitions wherever a transition has

multiple preplaces. These are the situations where the synchronous removal of

tokens is really essential.

Definition 4.1 Let N = (S,O, ∅, F,M0) be a net. Let Ob = {t | t ∈ O, |•t| > 1}.
The symmetrically asynchronous implementation of N is defined as the net

SI(N) := (S ∪ Sτ , O,U ′, F ′,M0) with

Sτ := {st | t ∈ Ob, s ∈ •t} ,

U ′ := {ts | t ∈ Ob, s ∈ •t} and

F ′ := F ∩
(

(O × S) ∪ (S × (O \ Ob))
)

∪ {(s, ts), (ts, st), (st, t) | t ∈ Ob, s ∈ •t} .

An example is shown in Figure 3.

As for the fully asynchronous case, an implementation of a plain net is always a

divergence-free τ -net.

Again, the only difference in behaviour between the original net and its implementa-

tion is that observable transitions can potentially be refused in the implementation,

as in Figure 3. This yields a concept of a symmetrically asynchronous net.
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N :

a b

SI(N):
ττ

a b

Fig. 3. The transition a can be refused in SI(N) by firing the left τ .

Definition 4.2

The class of symmetrically asynchronous nets respecting branching time equiva-

lence is defined as SA(B) := {N | SI(N) ≈F N}.

Again we have F (N) ⊆ F (SI(N)) for any plain net N [8]. We now show that

plain nets can be implemented symmetrically asynchronously with respect to failure

equivalence exactly when they do not contain reachable structures of the form shown

in Figure 3.

Definition 4.3

A plain net N = (S,O, ∅, F,M0) has a partially reachable N iff ∃t, u ∈ O. t 6= u

∧ •t ∩ •u 6= ∅ ∧ |•u| > 1 ∧ ∃M ∈ [M0〉N . •t ⊆ M ∨ •u ⊆ M .

Theorem 4.4 A plain net N is in SA(B) iff N has no partially reachable N.

Proof. See [19] or [8]. 2

The following proposition shows that the current class of nets strictly extends the

one from the previous section.

Proposition 4.5 FA(B) ( SA(B).

Proof. A net without partially reachable conflict surely has no partially reachable

N. The inequality follows from the example in Figure 2. 2

It turns out that our class of nets SA(B) is strongly related to the following estab-

lished net classes [2,3].

Definition 4.6 Let N = (S,O, ∅, F,M0) be a plain net.

(i) N is free choice, N ∈ FC , iff ∀p, q ∈ S. p 6= q∧ p• ∩ q• 6= ∅ ⇒ |p•| = |q•| = 1.

(ii) N is extended free choice, N ∈ EFC , iff ∀p, q ∈ S. p• ∩ q• 6= ∅ ⇒ p• = q•.

(iii) N is behaviourally free choice, N ∈ BFC , iff ∀u, v ∈ O. •u ∩ •v 6= ∅ ⇒
(∀M1 ∈ [M0〉.

•u ⊆ M1 ⇔ •v ⊆ M1).

The above definition of a free choice net is in terms of places, but the notion can

equivalently be defined in terms of transitions:

N ∈ FC iff ∀t, u ∈ T. t 6= u ∧ •t ∩ •u 6= ∅ ⇒ |•t| = |•u| = 1.

Both conditions are equivalent to the requirement that N must be N-free, where N

is defined as in Definition 4.3 but without the reachability clause. Also the notion

of an extended free choice net can equivalently be defined in terms of transitions:

N ∈ EFC iff ∀t, u ∈ T. •t ∩ •u 6= ∅ ⇒ •t = •u.
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a b a b

p q

a b c

N /∈ FC N /∈ FC N /∈ FC

N /∈ EFC N ∈ EFC N /∈ EFC

N ∈ SA(B) N /∈ SA(B) N /∈ SA(B)
N ∈ BFC N ∈ BFC N ∈ BFC

Fig. 4. Differences between various classes of free-choice-like nets

This condition says that N may not contain what we call a pure N: places p, q and

transitions t, u such that p ∈ •t ∩ •u, q ∈ •u and q 6∈ •t.

In [3] it has been established that FC ( EFC ( BFC . In fact, the inclusions follow

directly from the definitions, and Figure 4 displays counterexamples to strictness.

The class of free choice nets is strictly smaller than the class of symmetrically

asynchronous nets respecting branching time equivalence, which in turn is strictly

smaller than the class of behavioural free choice nets. The class of extended free

choice nets and the class of symmetrically asynchronous nets respecting branching

time equivalence are incomparable.

Proposition 4.7 FC ( SA(B) ( BFC, EFC * SA(B) and SA(B) * EFC.

Proof. The first inclusion follows because a partially reachable N is surely an N, and

also the second inclusion follows directly from the definitions. The four inequalities

follow from the examples in Figure 4. The first net is unmarked and thus trivially

in SA(B). The second ones symmetrically asynchronous implementation has the

additional failure <ε, {a, b}> and hence this net is not in SA(B). 2

In Figure 5 the relations between our semantically defined net class SA(B), the

structurally defined classes FC , EFC , and the more behaviourally defined class

BFC are summarised. These relations may be interpreted as follows.

Starting at the top of the diagram, free choice nets are characterised structurally,

enforcing that for every place, a token therein can choose freely (i.e. without in-

quiring about the existence of tokens in any other places) which outgoing arc to

take. This property makes it possible to implement the system asynchronously. In

particular, the component which holds the information represented by a token can

choose arbitrarily when and into which of multiple asynchronous output channels

to forward said information, without further knowledge about the rest of the sys-

tem. As this decision is solely in the discretion of the sending component and not

based upon any knowledge of the rest of the system, no synchronisation with other

components is necessary.

The difference between SA(B) and FC is that in SA(B) the quantification over the

places is dropped, making the requirement more straightforward: Every token can

choose freely which outgoing arc to follow. Thus, SA(B) allows for non-free-choice

structures as long as these never receive any tokens.

This also explains why BFC includes SA(B). Since SA(B) guarantees that all tran-
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FC

EFC SA(B)

BFC

)

(

(
)

#

Fig. 5. Overview of free-choice-like net classes

sitions of a problematic structure are never enabled, transitions in such structures

are never enabled while others are disabled.

The incomparability between the left and the right side of the diagram stems from

the conceptual allowance of slight transformations of the net before evaluating

whether it is free choice or not. Extended free choice nets and behavioural free

choice nets were proposed as nets that are easily seen to be behaviourally equiva-

lent to free choice nets, and hence share some of their desirable properties: in [2,3]

constructions can be found to turn any extended free choice net into an equivalent

free choice net, and any behavioural free choice net into an extended free choice

net. 1 Applied on the last two nets in Figure 4 these constructions yield:

τ

a b

p q

a b c

Fig. 6. Transformed nets from Figure 4

For the second net of Figure 4, a τ -transition is introduced, which collects both

tokens and then marks a single postplace from which the two original transitions

are enabled. Hence the choice between the two transitions is centralised in the

newly introduced place and thus free again. In the definition of our symmetrically

asynchronous implementation SI, we do not allow any insertion of such “helping” τ -

transitions, as it seems unclear to us how much computing power should be allowed

in possibly larger networks of such transitions. This becomes especially problematic

if these networks somehow track part of the global status of the net inside themselves

and thus make quite informed decisions about what outgoing transition to enable.

1 In [2,3] the nature of the equivalence between the original and transformed net is not precisely specified.
However, it can be argued that whereas the transformation from EFC-nets to FC-nets preserves branching
time as well as causality, the transformation from BFC-nets to EFC-nets preserves branching time only:
the third net of Figure 4 is interleaving bisimulation equivalent with its EFC-counterpart in Figure 6, but
whereas the original net can perform the transitions a and c concurrently (in one step), the transformed
net cannot.
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p q s

a b

⇒

p q s

τ

a τ

b

Fig. 7. Transformation to asymmetric asynchrony; g such that p <b
g s <b

g q.

5 Asymmetric Asynchrony

As seen in the previous section, the class of symmetrically asynchronous nets is

quite small. It precludes the implementation of many real-world behaviours, like

waiting for one of multiple inputs to become readable, a Petri net representation of

which will always include non free-choice structures.

Therefore we propose a less strict definition of asynchrony such that actions may

depend synchronously on a single predetermined condition. In a hardware imple-

mentation the places which earlier could always forward a token into some silent

transitions must now wait until they receive an explicit token removal signal from

their posttransitions.

To this end we introduce a static priority over the preplaces of each transition.

Every transition first removes the token from the most prioritised preplace and

then continues along decreasing priority. To formalise this behaviour in a Petri

net we insert a silent transition for each incoming arc of every transition. These

silent transitions are forced to execute in sequence by newly introduced buffer places

between them. In the final position of this chain, the original visible transition is

executed. An example of this transformation is given in Figure 7.

Definition 5.1 Let N = (S,O, ∅, F,M0) be a plain net.

Let g ⊆ (S ×O)× (S ×O) be a relation on F ∩ (S ×O) such that for each t ∈ O

g ∩ (•t × {t}) is a total order on •t × {t}. Let ≤t
g be the total order on •t given

by p ≤t
g s iff ((p, t), (s, t)) ∈ g.

We write mint
g for the ≤t

g-minimal element of •t and (s − 1)tg for the next place

in •t that is ≤t
g-smaller than s.

We define a set of silent transitions as X := {ts | t ∈ O, s ∈ •t}.
Let h : X → X ∪ O be the function

h(ts) =

{

t iff s = mint
g

ts otherwise
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p q r s

t u v

x y

p q r s

t u v

x y

N /∈ AA(B) N ∈ AA(B)

Fig. 8. Nets which have a left and right border reachable M, but no left and right reachable M

The asymmetrically asynchronous implementation with respect to g of N is de-

fined as the net AIg := (S ∪ Sτ , O,U ′, F ′,M0) with

Sτ := {st | t ∈ O, s ∈ •t, s 6= mint
g} ,

U ′ := h(X) \ O = {ts | t ∈ O, s ∈ •t, s 6= mint
g} and

F ′ := F ∩ (O × S)

∪ {(s, h(ts)) | t ∈ O, s ∈ •t}

∪ {(ts, st) | t ∈ O, s ∈ •t, s 6= mint
g}

∪ {(st, h(tp)) | t ∈ O, s ∈ •t, s 6= mint
g, p = (s − 1)tg} .

As before, we are interested in the relationship between nets and their possible im-

plementations. The definition of asymmetric asynchrony however allows different

implementations for the same net. We define a net to be asymmetrically asyn-

chronous if any of the possible implementations simulates the net sufficiently.

Definition 5.2

The class of asymmetrically asynchronous nets respecting branching time equiva-

lence is defined as AA(B) := {N | ∃g. AIg(N) ≈F N}.

As before, we have F (N) ⊆ F (AIg(N)) for any plain net N and any priority

relation g [8]. Additionally we would like to obtain a semi-structural characterisation

of AA(B) in the spirit of Theorems 3.4 and 4.4. Unfortunately we didn’t succeed

in this, but we obtained structural upper and lower bounds for this net class.

Definition 5.3

A net N = (S,O, ∅, F,M0) has a left and right reachable M iff ∃t, u, v∈O ∃p∈•t∩
•u ∃q∈•u∩•v. t 6= u∧u 6= v∧p 6= q∧∃M1,M2∈[M0〉.

•t∪•u ⊆ M1∧
•v∪•u ⊆ M2.

A net N = (S,O, ∅, F,M0) has a left and right border reachable M iff ∃t, u, v∈O

∃p∈•t∩•u ∃q∈•u∩•v. t 6= u∧u 6= v∧p 6= q∧∃M1,M2∈[M0〉.
•t ⊆ M1∧

•v ⊆ M2.

Theorem 5.4

A plain net N in AA(B) has no left and right reachable M.

A plain net N which has no left and right border reachable M is in AA(B).

Proof. See [19] or [8]. 2

12
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Figure 8 shows two nets, each with a left and right border reachable M but no

left and right reachable M, that thus fall in the grey area between our structural

upper and lower bounds for the class AA(B). In this case the first net falls outside

AA(B), whereas the second net falls inside. The crucial difference between these

two examples is the information available to u about the execution of y.

There exists an implementation for the right net, namely by u taking the tokens

from r, q and s in that order. The first token (from r) conveys the information that

y was executed, and thus t is not enabled. Collecting the last token (from s) could

fail, due to v removing it earlier. Even so, removing the tokens from r and q did

not disable any transition that could fire in the original net. In the left net such an

implementation will not work.

The following proposition says that our class of symmetrically asynchronous nets

strictly extends the corresponding class of asymmetrically asynchronous nets.

Proposition 5.5 SA(B) ( AA(B).

Proof. A net which has no partially reachable N also has no left or right border

reachable M. The inequality follows from the example in Figure 3. 2

As before, our class AA(B) is related to some known net classes [3].

Definition 5.6 Let N = (S,O, ∅, F,M0) be a plain net.

(i) N is simple, N ∈ SPL, iff ∀p, q ∈S. p 6= q ∧ p• ∩ q• 6= ∅ ⇒ |p•| = 1∨ |q•| = 1.

(ii) N is extended simple, N ∈ ESPL, iff ∀p, q∈S. p•∩q• 6= ∅ ⇒ p• ⊆ q•∨q• ⊆ p•.

Extended simple nets appear in [2] under the name asymmetric choice systems. Note

that simple is equivalent to M-free, where M is as in Definition 5.3 but without the

reachability clauses. Clearly, we have FC ( SPL ( ESPL and EFC ( ESPL,

whereas EFC * SPL and SPL * EFC : the inclusions follow immediately from

the definitions, and the first two nets of Figure 4 provide counterexamples to the

inequalities.

The class of asymmetrically asynchronous nets respecting branching time equiva-

lence strictly extends the class of simple nets, whereas it is incomparable with the

class of extended simple nets.

Proposition 5.7 SPL ( AA(B), AA(B) * ESPL and ESPL * AA(B).

Proof. The inclusion is straightforward, and the inequalities follow from the coun-

terexamples in Figure 4 (the second one) and Figure 9. The missing tokens in the

latter example are intended. As no action is possible there will not be any additional

implementation failures. 2

a b c

Fig. 9. N ∈ AA(B), N /∈ ESPL
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SPL

ESPL AA(B)

)
(

#

Fig. 10. Overview of asymmetric-choice-like net classes

The relations between the classes SPL, ESPL and AA(B) are summarised in Fig-

ure 10. Similarly to what we did in Section 4, we now try to translate Figure 10

into an intuitive description.

The basic intuition behind SPL is that for every transition there is only one preplace

where conflict can possibly occur. Whereas in SPL that possibility is determined

by the static net structure, in AA(B) reachability is also considered.

Similar to the difference between FC and EFC there exists a difference between

ESPL and SPL which originates from the fact that ESPL allows small transforma-

tions to a net before testing whether it lies in SPL. Again our class AA(B) does

not allow such “helping” transformations.

6 Conclusion and Related Work

We have investigated the effect of different types of asynchronous interaction, using

Petri nets as our system model. We propose three different interaction patterns:

fully asynchronous, symmetrically asynchronous and asymmetrically asynchronous.

An asynchronous implementation of a net is then obtained by inserting silent (un-

observable) transitions according to the respective pattern. The pattern for asym-

metric asynchrony is parametric in the sense that the actual asynchronous imple-

mentation of a net depends on a chosen priority function on the input places of

a transition. For each of these cases, we investigated for which types of nets the

asynchronous implementation of a net changes its behaviour with respect to failures

equivalence (in the case of asymmetric asynchrony, the ‘best’ priority function may

be used). It turns out that we obtain a hierarchy of Petri net classes, where each

class contains those nets which do not change their behaviour when transformed

into the asynchronous version according to one of the interaction patterns. This

is not surprising because later constructions allow a more fine-grained control over

the interactions than earlier ones.

We did not consider connections from transitions to their postplaces as relevant

to determine asynchrony and distributability. This is because we only discussed

contact-free nets, where no synchronisation by postplaces is necessary. In the spirit

of Definition 3.1 we could insert τ -transitions on any or all arcs from transitions to

their postplaces, and the resulting net would always be equivalent to the original.

Although we compare the behaviour of a net and its asynchronous implementations

in terms of failures equivalence, we believe that the very same classes of nets are

obtained when using any other reasonable behavioural equivalence that respects

branching time to some degree and abstracts from silent transitions—no matter if

14
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i1 i2

m

a b

alt

a m! m? b

i1 i2

Fig. 11. An MSC and a potential implementation as Petri net, which has an N.

this is an interleaving equivalence, or one that respects causality. We would get

larger classes of nets, for example for the case of full asynchrony including the net

of Figure 2, if we merely required a net N and its implementation to be equivalent

under a suitably chosen linear time equivalence. This option is investigated in [19].

The central results of the paper give semi-structural characterisations of our seman-

tically defined classes of nets. Moreover, we relate these classes to well-known and

well-understood structurally defined classes of nets, like free choice nets, extended

free choice nets and simple nets.

To illustrate the potential interpretation of our results in other models of distributed

systems, we give an example.

Message sequence charts (MSCs), also contained in UML 2.0 under the name se-

quence diagrams, are a model for specifying interactions between components (in-

stances) of a system. A simple kind are basic message sequence charts (BMSCs)

as defined in [13], where choices are not allowed. A Petri net semantics of BMCSs

with asynchronous communication and a unique sending and receiving event for

each message will yield Petri nets with unbranched places (see for instance [10]).

Hence in this case the resulting Petri nets are conflict-free and therefore fully asyn-

chronously implementable according to Theorem 3.4.

However in extended versions of MSCs, e.g. in UML 2.0 or in live sequence charts

(LSCs, see [11]), inline expressions allow to describe choices between possible be-

haviours in MSCs. Consider for example the MSC given in Figure 11 and a naive

Petri net representation. The instances i1 and i2 can either communicate or exe-

cute their local actions. Obviously, this requires some mechanism in order to make

sure that the choice is performed in a coherent way (see e.g. [7] for a discussion

of this type of problem). In the Petri net representation, we find a reachable N,

hence with Theorem 4.4 the net does not belong to the class SA(B) of symmetri-

cally asynchronously implementable nets. However, the net is M-free, and thus does

belong to the class AA(B) of asymmetrically asynchronously implementable nets.

By giving priority to the collection of the message token (choosing the appropriate

function g in our notion of implementation), it can be assured that instance i2 does

not make the wrong choice and gets stuck (however it is still not clear whether the

message will actually be consumed).

The obvious question is whether the naive Petri net interpretation we have given is

conform with the intended semantics of the alt-construct (according to the informal
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UML semantics the alternatives always have to be executed completely; in LSCs it

is specified explicitly whether messages are assured to arrive). However, on basis of

a maybe more elaborate Petri nets semantics, it could be discussed what types of

MSCs can be used to describe physically distributed systems, in particular which

type of construct for choices is reasonable in this case.

Another model of reactive systems where we can transfer our results to are process

algebras. When giving Petri net semantics to process algebras, it is an interesting

question to investigate which classes of nets in our classification are obtained for

certain types of operators or restricted languages, and to compare the results with

results on language hierarchies (as summarised below).

We now give an overview on related work. A more extensive discussion is contained

in [19]. We start by commenting on related work in Petri net theory.

The structural net classes we compare our constructions to were all taken from [3],

where Eike Best and Mike Shields introduce various transformations between free

choice nets, simple nets and extended variants thereof. They use “essential equiva-

lence” to compare the behaviour of different nets, which they only give informally.

This equivalence is insensitive to divergence, which is also relied upon in their trans-

formations. As observed in Footnote 1, it also does not preserve concurrency. They

continue to show conditions under which liveness can be guaranteed for some of the

classes.

In [1], Wil van der Aalst, Ekkart Kindler and Jörg Desel introduce two extensions

to extended simple nets, by allowing self-loops to ignore the discipline imposed by

the ESPL-requirement. This however assumes a kind of “atomicity” of self-loops,

which we did not allow in this paper. In particular we do not implicitly assume that

a transition will not change the state of a place it is connected to by a self-loop,

since in case of deadlock, the temporary removal of a token from such a place might

not be temporary indeed.

In [18] Wolfgang Reisig introduces a class of systems which communicate using

buffers and where the relative speeds of different components are guaranteed to

be irrelevant. The resulting nets are simple nets. He then proceeds introducing

a decision procedure for the problem whether a marking exists which makes the

complete system live.

The most similar work to our approach we have found is [12], where Richard Hopkins

introduces the concept of distributable Petri Nets. These are defined in terms of

locality functions, which assign to every transition t a set of possible machines or

locations L(t) on which t may be executed, subject to the restriction that a set of

transitions with a common preplace must share a common machine. A plain net N

is distributable iff for every locality function L that can be imposed on it, it has a

“distributed implementation”, a τ -net N ′ with the same set of visible transitions,

in which each transition is assigned a specific location, subject to three restrictions:

• the location of a visible transition t is chosen from L(t),
• transitions with a common preplace must have the same location
• and there exists a weak bisimulation between N and N ′, such that all τ -transitions

involved in simulating a transition t from N reside on one of the locations L(t).
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The last clause enforces both a behavioural correspondence between N and N ′ and

a structural one (through the requirement on locations). Thus, as in our work, the

implementation is a τ -net that is required to be behaviourally equivalent to the

original net. However, whereas we enforce particular implementations of an original

net, Hopkins allows implementations which are quite elaborate and make informed

decisions based upon global knowledge of the net. Consequently, his class of dis-

tributable nets is larger than our asynchronous net classes. As Hopkins notes, due

to his use of interleaving semantics, his distributed implementations do not always

display the same concurrent behaviour as the original nets, namely they add concur-

rency in some cases. This does not happen in our asynchronous implementations.

Another branch of related work is in the context of distributed algorithms. In [5]

Luc Bougé considers the problem of implementing symmetric leader election in the

sublanguages of CSP obtained by either allowing all guards, only input guards or

no communication guards at all in guarded choice. He finds that the possibility

of implementing it depends heavily on the structure of the communication graphs,

while truly symmetric schemes are only possible in CSP with input and output

guards.

Quite a number of papers consider the question of synchronous versus asynchronous

interaction in the realm of process algebras and the π-calculus. In [4] Frank de Boer

and Catuscia Palamidessi consider various dialects of CSP with differing degrees of

asynchrony. In particular, they consider CSP without output guards and CSP with-

out any communication based guards. They also consider explicitly asynchronous

variants of CSP where output actions cannot block, i.e. asynchronous sending is

assumed. Similar work is done for the π-calculus in [17] by Catuscia Palamidessi,

in [16] by Uwe Nestmann and in [9] by Dianele Gorla. A rich hierarchy of asyn-

chronous π-calculi has been mapped out in these papers. Again mixed-choice, i.e.

the ability to combine input and output guards in a single choice, plays a central

role in the implementation of truly synchronous behaviour. It would be interesting

to explore the possible connections between these languages and our net classes.

In [20], Peter Selinger considers labelled transition systems whose visible actions

are partitioned into input and output actions. He defines asynchronous implemen-

tations of such a system by composing it with in- and output queues, and then

characterises the systems that are behaviourally equivalent to their asynchronous

implementations. The main difference with our approach is that we focus on asyn-

chrony within a system, whereas Selinger focusses on the asynchronous nature of

the communications of a system with the outside world.

Finally, there are approaches on hardware design where asynchronous interaction is

an intriguing feature due to performance issues. For this, see the papers [14] and [15]

by Leslie Lamport. In [15] he considers arbitration in hardware and outlines various

arbitration-free “wait/signal” registers. He notes that nondeterminism is thought to

require arbitration, but no proof is known. He concludes that only marked graphs

can be implemented using these registers. Lamport then introduces “Or-Waiting”,

i.e. waiting for any of two signals, but has no model available to characterise the

resulting processes. The used communication primitives bear a striking similarity

to our symmetrically asynchronous nets.
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