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Abstract

Hybrid modelling techniques have evolved as a tool to design, verify
and guide the implementation of embedded systems. However they can –
and we think should – be used to express quantitative models about hy-
brid systems in other domains, e.g. empirical sciences. Since the formal
structure of hybrid automata corresponds well to sequentially organized
behaviour chains in living organisms, we argue for an application of hybrid
modelling techniques in the behavioural sciences and, especially, Psychol-
ogy.

We try to answer the question how human drivers move onto a freeway
and at the same time use this research as our testbed for hybrid automata
in the behavioural sciences.

1 Introduction

Hybrid automata have been developed as a formalism to model systems
in which discrete control logic interacts with a real-valued reality and
facilitate mathematical proofs about their behavioural properties. The
discrete control logic usually conceptualised is silicon based, but hybrid
automata make no such presumption. Hybrid automata are classically
used for modelling embedded systems and their software in different fields
of technical engineering. The focus lies on dependability of such systems
and hence on formal verification of properties. Several model checkers
[HHWt97, Fre05] have been developed for this purpose. Besides their for-
mal semantics, hybrid automata offer a pleasing visual notation accessible
with only a minimum of formal training.
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However, hybrid systems occur not only in computer science and other
engineering disciplines, but also in many other fields. Autonomous hybrid
systems can be found in biology, psychology and – as a multi-agent set-
ting – social sciences in general. One aim of these sciences is to generate a
conceptual model of the respective systems, and to test it empirically. A
formal notation would greatly improve both accessibility and comparabil-
ity of different models. Ideally, such a formal notation would not hinder
readers unacquainted with the notation from fully understanding what
the author wishes to express.

We will propose here to use hybrid modelling formalisms, in particular
hybrid automata, as a modelling notation in sciences other than computer
science. We argue, and will show in this paper by a prototypical applica-
tion, that the formal apparatus of hybrid automata is especially suitable
to construct, simulate and test empirical models of complex behaviour in
humans and other organisms. Of course, it would be an interesting per-
spective to use the power of model checkers as a formal verification tool
in this new application domain. However, the empirical nature of these
sciences is more closely reflected in simulation approaches.

The application we have chosen to illustrate our approach is the be-
haviour of human drivers in traffic. The obvious hope is, that a model of
the human driver will lead to increases in safety and possibly efficiency,
e.g. by using it for developing suitable driver assistance systems. Hence a
number of approaches in psychology currently investigate the quantitative
modelling of car driving with drivers as single subjects. This is in con-
trast to other quantitative models of behaviour, which usually refer to the
behaviour of larger populations of organisms (for example in the domain
of predator-prey interaction [Can70]). In the domain of more complex
behaviour of single subjects, the approach usually followed consists in
constructing a model of cognitive processes, which are intrinsically unob-
servable (see [And02]). Additionally, these models usually imply that com-
plex behaviour is under the control of conscious psychological processes
– an assumption which can hardly be justified when dealing with genet-
ically determined or highly consolidated behaviour. As a consequence,
plausible quantitative models of complex behaviour on the single subject
level can hardly be found at all. Instead of presenting a formal model, re-
searchers in these fields often resort to semi-formal descriptions to explain
the interactions between various variables of the subject in question. In
contrast to these approaches, we concentrate here on a behavioural model
on the single subject level, restricted to rather simple stimulus-response
relations. We will explain a modelling approach based on so-called rein-
forcement values and formalise it in terms of hybrid automata. We have
implemented a simulation framework for hybrid automata coupled with
an optimization process based on generic algorithms. We present first
simulation results showing the feasibility of the approach.

Section 2 will introduce hybrid automata formally. Section 3 intro-
duces the conceptual model for behaviour using reinforcement values and
its formalisation in terms of hybrid automata, and illustrates the approach
by some simpler examples of behaviour. Section 4 will start with a dis-
cussion of existing work on modelling human drivers. We then model and
simulate the behaviour of drivers entering a freeway. Finally Section 5
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x = 19
Off
ẋ = −0.1x
x ≥ 15 x < 16

x > 18 On
ẋ = 4− 0.1x
x ≤ 23

Figure 1: The obligatory thermostat example from [Hen96].

will, besides summarising, suggest certain extensions of hybrid automata
to ease modelling human behaviour.

2 Hybrid Automata

Our description of hybrid automata follows [Hen96] closely.
A hybrid automaton is a model of a hybrid system, i.e. a system

consisting of a discrete (usually controlling) part, and a real-valued and
continuous part. Formally, a hybrid automaton is a finite automaton
extended with a set of real-valued variables and various possibilities to
modify and test these variables.

Definition 1. A hybrid automaton consists of

• a finite set X = {x1, x2, . . . , xn} of real-valued variables, and two
related sets Ẋ and X ′ denoting the derivatives during continuous
change and the new values after discrete change respectively,

• a finite directed multigraph (V,E) (control modes and control switches),

• three functions init, inv, and flow, labelling vertices with predicates
over X, X, and X ∪ Ẋ respectively (initial condition, invariant con-
dition, flow condition),

• a function jump, labelling edges with predicates over X ∪X ′,

• a finite set of events and a function event labelling edges with events.

The prototypical example is that of the thermostat of Figure 1. The
thermostat consists of two discrete control modes, aptly named “off” and
“on” and a single variable x denoting the temperature. The init function
maps “on” to a constantly false predicate and “off” to x = 19, as denoted
by the single arc without a start on the left. The system starts with the
thermostat switched off and the temperature at 19 (degrees Celsius for
example). As long as no discrete control switch occurs, the temperature
sinks with ẋ = −0.1x, i.e. exponentially. Once the temperature sinks
below 18, the thermostat may switch to “on”. Even though the figure
seems to indicate the jump predicate to be x > 18 it is usually understood
to implicitly include x′ = x as well (as a discrete jump in the control
structure only uncommonly induces a discrete jump in the real-valued
part of the system). The automaton might however decide not to switch
on immediately but wait a bit longer. While remaining in the “off” state
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however, the temperature must never sink below 15, as denoted by the
invariant inv, and the automaton must switch to “on” at that point at
latest. The “on” state works similar, and for sake of brevity we omit a
detailed (and purely redundant) description here.

3 Hybrid modelling of behaviour

This section introduces our methodology of modelling behaviour and its
formalisation in terms of hybrid automata, illustrated by rather simple ex-
amples of behaviour. Section 4 will then introduce our specific application
and an as-to-date tentative model of human drivers in greater detail.

3.1 Hybrid Automata as a formalism for the be-

haviour of organisms

The behaviour of organisms can be structured as a hierarchy of different
behaviour systems and subsystems (see Figure 2). Depending on internal
states and external influences the organism may change from one be-
haviour system to another. The controlling variable of such categorical
behaviour changes is thought to be an internal representation of all rel-
evant situational factors, weighted by their anticipated outcomes – the
so-called reinforcement value. The reinforcement value can be thought of
as a “common currency” by which all anticipated consequences of a be-
haviour are evaluated. Switching from one behavioural state to another
may occur within a single behaviour system, as well. An illustrative ex-
ample are so called Sequential Action Patterns (SAPs). SAPs are fixed
behavioural sequences, which are elicited by a biologically relevant stimu-
lus. In each state of the sequence there is a set of variables which control
the behaviour of the organism in a certain way. The influence of the con-
trolling variables in a certain behavioural state could – in principle – be
specified by a set of differential equations. If certain variables reach a
critical value, however, the organism switches to another state in which
a different set of variables may control the behaviour. It may also occur
that the same variables influence the behaviour in a different way. The
change from one behavioural state to another within an SAP may thus
be expressed as a discrete transition from one set of differential equations
to another.

We will model an SAP as a hybrid automaton by representing each
discrete state of the organism as a control state of the automaton. The
assumed variables of the organism become variables in the automaton
and the differential equations governing the variables of the organism are
associated to control states as indicated by the mapping from behaviour
state to control state.

3.2 Examples of SAPs

The potential of this approach will be illustrated in this section by a few
examples for sequentially organized behaviour in animals and humans.
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Biting
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Chasing

Parenting

Seeking

Figure 2: Hierarchical organization of reproductive behaviour (adapted from
[ISV88])

Mating

The three-spined stickleback (Gasterosteus aculeatus) is a species of small
fish with a rather complex mating behaviour, which is organized in three
distinct stages. At first, the male establishes a territory and constructs a
nest by digging a hole in the ground and collecting soft material. In this
stage the presence of a female does not have any influence on the males
behaviour. As soon as the nest is finished, however, females entering the
territory are courted and induced to lay eggs in the nest. Once the eggs
are laid the presence of a female functions as a trigger to chase it away
[KD93].

From this textual description, one can derive an automaton similar to
Figure 3. Modelling the volume of the hole dug so far by v the automa-
ton starts in the state “Build” where the volume of the hole is increased
steadily. Once the hole has reached the desired size (the automaton has

to make the threshold specific), courting behaviour begins. Our model
assumes the existence of a nearest female, the d variable tracking its dis-
tance to the nest. During courting, the distance is lowered until it reaches
zero, at which point the female is chased away.

Feeding Behaviour

Figure 4 shows the hybrid automaton representation of a preliminary for-
aging model. The model consists of three higher order behaviours – eat,
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v = 0
Build
v̇ = 1
v ≤ 20

d = 0

d > 8
d′ ∈ [10, 200]

Chase Away
ḋ = 1
v̇ = 0
true

Court
v̇ = 0
ḋ = −1
d ≥ 0

v ≥ 20
d′ ∈ [10, 200]

Figure 3: A tentative model for the courting behaviour of the three-spined
stickleback

idle and search – with a second behavioural level nested within search
behaviour. The main factor in this model is a steadily increasing vari-
able x, representing the reinforcement value of food. After it has reached
a certain threshold value, the animal will start foraging, starting with
a global search, which focuses on potential food sources (for example a
certain type of tree, which signals the availability of edible fruit). After
a potential food source has been encountered, the animal switches to a
focal search mode, where it looks for specific food items (for example a
certain type of fruit) until too much time (t) has passed. If food has been
found (we model the amount by y), the animal will start consuming it,
thereby lowering the reinforcement value of food until either the animal
is satiated or the food source depleted. The specific numeric values of the
model will be different for different species.

Easter Egg Search

Similar to the distinction between global and focal search mode in animal
foraging, humans also sometimes switch between different strategies while
executing a single task. Consider the yearly task of finding easter eggs
hidden within some well defined area. The switching of strategies can be
described by the hybrid automaton of Figure 5. Initially, one scans the
area, trying to look for locations which appear to promise good conceal-
ment. Having identified such a location, one moves there and tries to find
an egg therein (which might not indeed exist, as modelled by egg). The
actions exhibited during the two phases of search are clearly different.
Note that during the global search mode the occurrence of an easter egg
has no influence on the searcher’s behaviour. Empirically this means that
one does not notice an egg if one is looking for potential hiding places.

Most humans also note the decline in search success once most eggs
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x = 0
Idle
ẋ = 0.1
x ≤ 20

x > 15
Global
Search
ẋ = 0.1
x ≤ 100

Eat
ẋ = −2 ∧ ẏ = −1
x > 0 ∧ y > 0

Focal
Search

ẋ = 0.1 ∧ ṫ = 1
x ≤ 100 ∧ t ≤ 10

y′ ∈ [10, 100]

y = 0

x < 10

t′ = 0 t > 2

Figure 4: A tentative model for foraging behaviour
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t = 0
Global
ṫ = 1
t ≤ 20

egg′ = {0, 1}
∧ t′ = 0

t > 8 ∨ egg = 1
∧ t′ = 0

Focal
ṫ = 0.1
t ≤ 10

Done
ṫ = 0
truet ≥ 15

Figure 5: A tentative model for easter egg searching

have been found and finally abandon the search. We model this by keeping
track of the time t during which no egg was found.

4 Hybrid Behaviour Simulation of Hu-

man Drivers

As already noted, we will try to use hybrid automata modelling to answer
questions about life and death, which is to say, behaviour in traffic. For a
person who has just learned to drive a car, conscious cognitive processes
determine most of the driving behaviour. As experience is accumulated,
however, the behaviour tends to become automated to a considerable
degree. Thus, steering, braking and even lane changes happen without
the driver’s consciousness being necessary for controlling it. Both for the
design of advanced driver assistance systems and the design of the driving
environment it would be useful to implement this fact in a driver model.

We took this problem as our testbed for the applicability of hybrid
automata to the modelling of human behaviour. As a first step of the re-
search, we restrict our attention to the situation of driving onto a freeway.

Models of the behaviour of human drivers are usually situated in the
domain of cognitive psychology. So-called cognitive driver models treat
the driver’s behaviour as a result of some complex information processing
sequence, which can be divided into several stages of perceiving, evalu-
ating, goal-setting and deciding (for example [SBL01, MEGZ09]). In the
context of the IMoST Project [IMo], a formalisation of such models by
hybrid automata started, but turned out to be quite complex.

Cognitive models, however, suffer from some severe problems: Firstly
they model processes that are intrinsically unobservable. And secondly,
they tend to become highly complicated, even when modelling simple sit-
uations. We therefore ground our model on observable behaviour, namely
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trajectory and speed, restricting ourselves to only a single internal “hid-
den variable” – the reinforcement value. Our results will show that, for
our setting, it is indeed possible to model such complex behaviour faith-
fully by a rather simple model. We are confident that the approach scales
for even much more complex situations, e.g. situations considering several
interacting drivers.

The approach put forward in this paper is radically different from tra-
ditional, cognitive models of driving behaviour. As a starting point we
take the fact that most driving behaviour is a result of implicit feedback-
learning processes such as operant and classical conditioning. It appears
sensible, therefore, to postulate some kind of reinforcement value of rel-
evant parameters of the situation in question. By reinforcement value
we mean the amount to which an outcome is more preferable to possible
alternatives (“to collide with another car”, for example, is less preferable
than “to reach travelling speed”). This reinforcement value does not need
to be represented consciously in the organism. Neither does it refer to
a set goal, towards which the behaviour of the organism is driven. The
reinforcement value in a given situation is a (purely theoretical) function
of the anticipated consequences of a possible behaviour. It may depend
on biological determinants (genetic predispositions), as well as on the or-
ganism’s learning history. In the context of acquired behaviours such as
driving, the reinforcement value can be taken to be the result of the con-
sequences of past driving behaviour. Abrupt changes in trajectory, for
example, are associated with a negative reinforcement value – not due to
an evaluative process occurring in the driver – but rather because of (po-
tentially dangerous) past consequences of abrupt trajectory change. By
means of the mentioned feedback learning processes the behaviour even-
tually approximates an optimal solution for a given situation. Thus, our
main hypothesis is that drivers tend to behave in such a way that the
reinforcement value in a given situation is maxisized.

To reflect the optimising process of the organism in our models, we
include into the hybrid automata “unknown” functions (f and g in our
model), and a reinforcement value variable (q in our model).

Figure 6 shows a hybrid model of a driver entering the freeway. We
model the driver and the car as one unit, disregarding for the time being
intermediate processes like moving the foot to press a pedal.

The model is based on the assumption that the driver starts at a given
velocity v and has a desired travelling speed on the freeway. Moving onto
the freeway he tries to avoid high forces due to acceleration or trajectory
change, to stay as far to the right as possible and, more than anything,
avoid collisions with other vehicles.

The three states of the automaton represent three different phases of
the manoeuvre. In approach, the car can not yet move off the acceleration
lane and simply approaches the situation with a constant velocity. In lane

change, the actual acceleration and lane changing takes place. In travel the
car again keeps velocity and angle to the road constant. We use this state
to evaluate whether the state at the end of the lane change behaviour is
sufficiently stable to keep the car on the freeway for a meaningful amount
of time.

The car has a position (x, y), a current velocity v, and an angle to
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x = 0 ∧ y = 0
q = 0
v = 2 ∧ α = 0
x2 = 0 ∧ y2 = 5

approach

x < 26
ẋ = v · cos(α)
ẏ = v · sin(α)
q̇ = 0
v̇ = 0 ∧ α̇ = 0
ẋ2 = w ∧ ẏ2 = 0

x > 25

lane change

x < 80
ẋ = v · cos(α)
ẏ = v · sin(α)
v̇ = f(x) ∧ α̇ = g(x)
ẋ2 = w ∧ ẏ2 = 0
q̇ = −f(x)2 − tan(g(x)2)v2

−max(0, 1
max(9.01,(x−x2)2+(y−y2)2)−9 )

x > 70

travel

ẋ = v · cos(α)
ẏ = v · sin(α)
v̇ = 0 ∧ α̇ = 0
ẋ2 = w ∧ ẏ2 = 0
q̇ = −(v − 7)2 + 100 ·min(0, y − 5)
+100 ·min(0, 15− y)− y

−max(0, 1
max(9.01,(x−x2)2+(y−y2)2)−9 )

Figure 6: A model of a human driver moving onto a freeway with another
vehicle already on the freeway. x, y: position, v: velocity, α: angle to freeway
direction, x2, y2: position of other vehicle, w: velocity of other vehicle, f ∈
[0, 2]R: acceleration (optimised function), g ∈ [−0.1, 0.1]R: steering (optimised
function), q: reinforcement value (measured at x = 140)
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the lane α. Those four variables are related in the obvious way. The
variables v and α can be controlled by the driver via the functions f

and g, representing acceleration and steering respectively. It is those
two functions we optimise towards maximal reinforcement value. This
reinforcement value is represented by the value q into which we integrate
all negative experiences possible while driving onto the freeway. Finally,
we model another (dumb) car driving on the right lane of the freeway via
the position (x2, y2) and its velocity w to make the situation a bit more
interesting.

The terms contributing to q in lane change are −f(x)2 for acceleration
forces and −tan(g(x)2)v2 for angular forces as we hypothesise that drivers
try to minimize forces affecting them. To ensure that the reinforcement
value gets (strongly) negative when the car is currently stuck in another,
we include the term −max(0, 1

max(9.01,(x−x2)2+(y−y2)2)−9
). In travel we

keep this crash-related term and add −(v − 7)2 as a term for deviations
from the desired target velocity, and 100·min(0, y−5) resp. 100·min(0, 15−
y) to negatively valuate time spent outside the road on the right resp.
left side, and finally −y as a small incentive to drive on the rightmost
lane. Our model has a number of rather arbitrarily chosen parameters,
representing the desired target velocity (7), the size of a car (9), the width
of a lane (5), and the length of the acceleration lane (50).

In order to get visual feedback about our models, we wrote a numerical
simulator for our hybrid automata models. It can either approximate the
complete statespace of the automaton or execute (much faster) monte-
carlo approximations to estimate the expected value of the reinforcement
value. The monte-carlo approach in particular enables us to use genetic
algorithms, which need to execute a model many times, to search for those
values of the unknown functions maximising the expected reinforcement
value.

Figure 7 shows simulation results of the model, illustrating the be-
haviour of the driver after having optimised for the maximal possible
reinforcement value. The upper panel shows how a car moves on the
freeway with a comparably slow vehicle already on the road. In the sim-
ulation pictured in the second panel we raised the speed of car 2 just a
little bit and, as a consequence, observed an abrupt qualitative shift in
car 1’s behaviour. Instead of accelerating and entering in front of car 2 it
moves more slowly, enters after car 2 and overtakes it right after having
entered. Note that in no part of the model we specified a behaviour like
“overtaking” or “filtering into the stream of traffic”. The observed be-
haviour emerged naturally from the postulated reinforcement values and
the optimization process.

5 Conclusion

The aim of this paper was to provide an outline of the potential of hybrid
models in the domain of behavioural psychology and empirical science in
general. We argued for the application of hybrid automata to model com-
plex behaviour of living organisms. In addition to some general examples
of hybrid systems within the context of animal behaviour we construed a
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Figure 7: Two simulation results with differing w (3.2 and 3.3 respectively).
The blurring represents non-determinism of the model.
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preliminary model of a human driver entering a freeway. The results of
the simulation so far correspond well to the behaviour one would expect
of a real driver. On the qualitative level, the model predicts “filtering
into the traffic” as well as “overtaking” without ever having specified any
such behaviours. Apparently, there seems to be no need for a cognitive
process initiating these behaviours. Instead, a simple feedback learning
mechanism like operant conditioning is sufficient to explain even complex
driving manoeuvres. We take this as an illustrative example for the poten-
tial of a purely behavioural model of human drivers in terms of a hybrid
system. We are currently working towards an empirical validation of the
model in order to derive quantitative predictions for real life situations.

Ultimately, we would like to move on to modelling more complex sit-
uations involving substantially more than two cars. For this purpose we
will extend the scope of hybrid automata to enable hierarchical modelling
and multi-agent systems.

As shown in Section 3.1 animal behaviour is often structured in a hier-
archical manner (compare Figure 2). Unfortunately, hybrid automata do
not currently support hierarchical modelling – probably because it does
not add to formal expressiveness. It would, however, reduce cognitive load
both on the modeller and on those trying to understand the model. As
other hybrid approaches like hybrid statecharts [KP91] already include
hierarchical elements, we expect an integration of hierarchical elements
into hybrid automata to be largely unproblematic. One interesting prob-
lem will be prioritisation of state transition between different levels of the
hierarchy. While priorities are relatively clear-cut when modelling com-
puter systems, organisms tend to have various kinds of fuzzy mechanisms
for selecting to which behaviour to switch next. In principle these mech-
anisms could be modelled by sufficiently sophisticated conditions on all
transitions – as could hierarchy – but if we strive for simple models, a
priority mechanism based on continuous variables might be better suited.

Many of our arguments in favour of hybrid automata also support
using hybrid statecharts. So far however, we had no use of some of the
statechart features, and decided to stay with the simpler formalism, the
models of which could – if need arises – be converted to hybrid statecharts
easily enough.

When trying to model multi-agent systems, an explicit description of
all interactions between all possible pairs of agents as we did in the au-
tomaton in Figure 6, becomes unwieldy. Rather, it must become possible
to describe interactions between agents without explicitly naming them.
To address communication partners in such a scheme, agents must also be
enabled to “search for” other agents using conditions based on real-valued
variables, e.g. distance.

Once these extensions have been implemented in our modelling frame-
work, it should be possible to extend the scope of our approach to a great
variety of real life situations, not only in the domain of driver simulation.
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