TECHNISCHE UNIVERSITAT CAROLO-WILHELMINA ZU BRAUNSCHWEIG

Studienarbeit

Asynchronous Petri Net Classes

Jens-Wolfhard Schicke

24. April 2008

Institut fiir Programmierung und Reaktive Systeme

Prof. Dr. Ursula Goltz

betreut durch:

Prof. Dr. Ursula Goltz
Prof. Dr. Rob van Glabbeek

Abstract

Keywords Asynchrony, Synchrony, Petri Net Classes, Semantical Characterization

Contents

List of Figures

List of Abbreviations

1

2

5

6

Introduction

Basic Notions

Fully Symmetric Asynchrony
Symmetric Asynchrony
Asymmetric Asynchrony

Conclusions and Related Work

Bibliography

Vi

vil

16

35

52

56

List of Figures

vi

1.1
2.1
3.1

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
9.3
5.4
)
2.6
5.7
5.8

Transformation to the symmetrically asynchronous implementation 2
A net without completed traces 6
N ¢ FSA(B), N € SA(B) 9
N & SA(B), N€ AA(H,B) 20
NeSAB), N¢ EFC,N¢FC 28
N e ESPL,TSPL,AA(V,B),AA(H,L), N ¢ FC,SPL, AA(H,B),SA(L) 28
NeSA(L), N¢ BFC, N ¢ SA(B) 32
NeBFC,N¢&SA(L), N¢EFC 32
Overview of the symmetrically asynchronous net classes 33
Transformation to AL ,(N) 36
N ¢ AA(H, B), N has a left and right border reachable M 43
NeSPL, N¢ TSPL, N € AA(H,B), Ne ESPL 44
N e AA(H,B), N ¢ ESPL 45
N ¢ AA(V,B), N ¢ AA(V,L), Ne FC, N € AA(H,B) 46
N e AAM,L), N € AAM,B), N¢ AA(H,L) 47
N e AA(H,L), N ¢ AA(M,B), 49
Overview of the asymmetrically asynchronous net classes o1

List of Abbreviations

AA(H,B)
AA(H,L)
AA(M,B)
AA(M,L)
AA(V,B)
AA(V,L)
AT

BFC
EFC
ESPL

FC
FSA(B)
FSA(L)
FSI
SA(B)
SA(L)

ST

SPL
TSPL

tail asymmetrically asynchronous nets respecting branching time
tail asymmetrically asynchronous nets respecting linear time
asymmetrically asynchronous nets respecting branching time
asymmetrically asynchronous nets respecting linear time

front asymmetrically asynchronous nets respecting branching time
front asymmetrically asynchronous nets respecting linear time
asymmetrically asynchronous implementation

behaviourally free choice

extended free choice nets

extended simple nets

free choice nets

fully symmetrically asynchronous nets respecting branching time
fully symmetrically asynchronous nets respecting linear time
fully symmetrically implementation

symmetrically asynchronous nets respecting branching time
symmetrically asynchronous nets respecting linear time
symmetrically implementation

simple nets

simple nets in terms of transitions

Vil

1 Introduction

The objective of this paper is to describe the distinction between synchrony and asyn-
chrony in distributed systems in novel and detailed ways.

Naively, synchrony between two events in a distributed system means that both events
happen “at the same time”. In real-world systems however this concept is ill-defined as the
speed of light introduces some inherent amount of asynchrony everywhere in the system
and whether two events happen at the same time depends on the observer. Nonethe-
less two events can be considered synchronous when “nothing of importance could have
happened between them.”

Consider for example two concurrently running processes A and B which wish to exchange
information by sending some kind of message. The event of A sending the message and
the event of B receiving it can now either be synchronous or asynchronous. If the two
events happen synchronously, no further computation can happen anywhere in the system
while the message travels, which in particular means that B is indeed ready to receive the
message when A sends it. If however the two events are asynchronous, B might decide,
after A sent the message, not to communicate and instead do something else. Thus it is
not guaranteed that B will ever receive the message as intended by A.

In practice, to get a system in which synchrony between events is meaningful clocks are
used, as seen in many computer chips. However the larger the part of the system, which is
synchronized using the same clock, the lower the performance will be. Thus splitting the
system in many asynchronous parts will improve performance, sometimes considerably.

To help in this splitting, we want to answer the question which events in a system are
asynchronous, that is whether they occur synchronously or not with other events is irrel-
evant.

Much has already been written about related questions during the last decades. Using
variations of CSP there are [5], [6] and [7], Petri nets have been covered in [10], locally
synchronous systems in general by [2| and recently asynchronous rw-calculus has been
employed by [9], [16] and [15].

Impossibility results for encoding synchrony in asynchronous systems have been obtained
in some of these papers while other ones achieved concrete encodings for the same problem
using other constraints.

More hardware oriented results exist as well, as the problem of how to implement a
specified behaviour using the most performant communication possible frequently occurs
during chip design. See [12] for some examples.

1 Introduction

OO O

Figure 1.1: Transformation to the symmetrically asynchronous implementation

An overview and a detailed comparison between our results and the literature is made in
Section 6.

To study the problem in a basic model independent from specific language constructs, we
have chosen Petri nets as our model of computation.

In Petri nets, only very low-level primitives are available and the differences between
synchrony and asynchrony are hence more obvious. As do many other formal models,
Petri nets have, despite their rather small set of primitives, synchrony already built in:
Whenever a transition fires, the tokens of all preplaces are removed atomically, and no
other transition can use them. This becomes especially significant in the case of conflict,
where multiple transitions share the same preplace. To disallow this form of synchrony
and get an “asynchronous” Petri net, the reality of physical processes can be mimicked in
the form of silent transitions which pretend that removing tokens is not an instantaneous
action. Thus other events can occur even while one transition is in the process of firing.

We call the net with the newly introduced transitions an “implementation”, as it repre-
sents a possible real-world implementation of the original net. In this paper we introduce
three different possible asynchronous implementations, namely the “fully symmetrically
asynchronous”, the “symmetrically asynchronous” and the “asymmetrically asynchronous”
implementation, which differ in how much additional structure is allowed between the
invisible transitions to manage the removal of tokens. These different implementations
represent different grades of asynchrony, thereby enabling us to describe which communi-
cation structures can still be implemented at which grade of asynchrony.

An example of such an asynchronous implementation of a net can be seen in Figure 1.1.
It can be seen as a representation of two processes (one on each side of the net) which
communicate synchronously by executing the transition b together. Note that after in the
implementation the sender can no longer be sure whether the receiver will ever be willing
to process the message, which was not the case before.

The new system can still perform the same set of actions, but can also deadlock. These two
behaviours seem intuitively different. To formalize this intuition of difference, equivalence
relations are used, which define when exactly two systems are “the same”.

A quite comprehensive overview over existing equivalence relations for reactive systems
is given by [19], [20] and [21]. Such equivalence relations can be classified along different

dimensions, two of the most prominent being the sensitivity to the decision structure be-
tween alternative behaviours of a system and the sensitivity to causality between different
actions. Along the first dimension, equivalences which essentially disregard the decision
structure are called linear time equivalences whereas ones which respect it (in more or
less detail) are called branching time equivalences.

Returning to our original problem, we can now characterise classes of Petri nets by con-
sidering whether they are equivalent to their implementation. This characterisation has
two parameters we can choose: By which equivalence relation to compare the behaviour
and how exactly to perform the implementation, i.e. where to insert new transitions and
which structures to allow between the them. Choosing different sets of parameters will
not only give new insight into the difference between synchrony and asynchrony but will
also produce a classification of equivalence relations with respect to their ability to discern
the two.

We will start our search for useful equivalence relations at the coarsest end of the spectrum,
namely trace equivalence, comparing just the sequences of actions performed. It will turn
out however, that neither trace equivalence nor completed trace equivalence is suited to
our needs.

We finally find a useful “linear time” equivalence by comparing the pomsets of maximal
processes of a net. This equivalence respects causality and parallelism and enables us to
detect local deadlocks in spite of infinite concurrent activity. Since parallelism is respected
we can argue that the implementation will be “as efficient” as the original net.

For branching time semantics, we use failures equivalence which is one of the most used
equivalences.

It turns out that our semantically characterised net classes, induced by the various im-
plementations and equivalence relations, are related to well known structural net classes.
Symmetrically asynchronous nets relate to free-choice and extended free choice nets, while
asymmetrically asynchronous nets relate to simple nets. The exact relations naturally de-
pend on the chosen equivalence relation. This result implies that free choice and simple
nets can be easily distributed. Our classes are larger than the structural ones however, as
distributability depends on concrete behaviour and not static structure.

In Section 2, we proceed by introducing some basic notions necessary for the subsequent
examination of net classes. Afterwards Section 3 describes the effects of the fully sym-
metrically asynchronous implementation, first by proving some basic lemmas about the
implementations behaviour then by giving a more structural characterisation of one of
the resulting net classes. Section 4 then repeats those steps for the symmetrically asyn-
chronous implementation. Additionally relations to various structural net classes are
given. In Section 5 those two steps are also done for the asymmetrically asynchronous
implementation. Finally an analysis of how the results of related work are connected with
ours is given in the conclusions in Section 6.

2 Basic Notions

We consider here 1-safe net systems, i.e. places never carry more than one token and a
transition can fire even if pre- and postset intersect. To represent unobservable behaviour,
which we use to model asynchrony, the set of transitions is partitioned into observable
and unobservable ones.

Definition 2.1
A net with silent transitions is defined as N = (S, 0, U, F, M,) where

— Sis a set (of places),

— O is a set (of observable transitions),

— U is a set (of unobservable transitions),

~ FC(SxTUT x8) (the flow relation) with T'= O U U (transitions) and
— My C S (the initial marking).

In this paper we only consider finite nets, i.e. S, O, U are all finite.

We denote the preset and postset of a net element x by *z := {y | (y,z) € F} and
by z* = {y | (z,y) € F} respectively. Where necessary we extend functions to sets
element-wise. Furthermore the transitive closure of the flow relation is denoted F'*.

The semantics of such a Petri net can be described using the “token game” Whenever
all preplaces of a transition hold a token (i.e. *z C M) that transition can fire, thereby
removing all those tokens and generating new ones on its post-places.

Definition 2.2 Let N = (S,0,U, F, My) be a net. Let My, My C S.
G C(OUU),G +# @, is called a step from My to My, Mi[G)nMs, iff

— all transitions contained in G are enabled, i.e.
Vie G.tC MiAN(M*t)Nt* =2,
— all transitions of G are independent, that is not conflicting:
Vibue Git#u. tNu=aANt*Nu* =9,

— in M; all tokens have been removed from the preconditions and new tokens have
been inserted at the postconditions:

M2:<M1\U’t>UUt’.

teG teG

We omit the subscript N if clear from context. To make proofs about contact freeness
easier in notation, we introduce a notation for a possibly not contact-free step and
write Mi[G)M, iff Vt € G. *t C M; and the second and third conditions from above
hold.

To simplify statements about possible behaviours of a net, we introduce some abbrevia-
tions.

Definition 2.3
For a net N = (S,0,U, F, My), we define three relations:

— — N CP(S) x P(0) x P(S) as My ~Soy My < G C O A MGy M,

- LN - P(S) X P(S) as M; L>N M, & dt e U. Ml[{t}>NM2

- —yN Q P(S) x O* XP(S) as M1 :U>N M2 & dn Z 0. O':tth"'tn Q O* A
T *x {t1} 7 * {t2}

P T * {tn} o
M, —y—N—N—N—pN " —n—N—nN Mo

We write M; -% for IMy. M, -5 My, My, <= for BM,. M, -5 M, and similar for
the other two relations. We write M, —— for M, > AYG C O. M, .

A marking M, is said to be reachable iff there exists a ¢ € O* such that M, == M,.
The set of all reachable markings is denoted by [Mj).

This paper only considers contact-free nets where in every reachable marking M; € [My)
forall t € OU U with *t C M,

(M *)Nt* =2 .

Definition 2.4
A tuple N = (S,0,U, F, My) is an occurrence net iff
— all conditions of Definition 2.1 hold,
~Ve,y e SUOUU. (x,y) € Ft = (y,x) ¢ FT,
- Vse S |°s] <1A|s*] <1and
-~ My={s|seS *s=0}.

A place s € S in an occurrence net is said to be mazimal iff s* = @. We write N° for
the set of all maximal places of an occurrence net N. Similarly we write °N for the set
of minimal places defined as °N := {s | s € S,*s = @}. Note that we do not enforce
finiteness for occurrence nets.

Definition 2.5
A slice of a net N = (S,0,U, F, My) is a maximal set C' C S such that
Vo,y € C. (z,y) ¢ FT.

Definition 2.6 Let N = (S,0,U, F, M) be a net and let N = (S',0",U’, F', M{) be
an occurrence net.
A mapping f: (S"UO'UU’) — (SUOUU) is a process of N iff

2 Basic Notions

() ®

n

Figure 2.1: A net without completed traces

~ [CSAFO)CONFU) CU,

- f(Mp) = Mo,

— for every slice C of N', Va,y € C. f(x) = f(y) = x =y (f is injective over all
slices) and

W e O U F() = f(t) A F(") = f(t)°.

Definition 2.7
A process f from an occurrence net N’ to a net N is said to be mazimal iff f(N') +—y.
The set of all maximal processes of a net N is denoted by M P(N).

To describe which nets are “asynchronous”, we wish to compare their behaviour to that
of their implementations using equivalence relations. The simplest useful equivalence
available is trace equivalence. This equivalence declares two nets N = (S, 0, U, F', M) and
N' = (8,0",U", F', M) to be equivalent iff every trace of either net is always also possible
in the other, i.e. Vo. (My ==y) & (M} ==n+). However we will find (in Lemma 4.4)
that trace equivalence will always treat original and implementation as equivalent and we
would thus be unable to discern synchronous and asynchronous nets.

The difference in behaviour between a net and its implementation will always be in the ex-
istence of deadlocks as in the example of Figure 1.1. To detect deadlocks, completed trace
equivalence is usually used. This equivalence additionally compares whether a trace was
complete, i.e. whether no further transition could fire after the net produced the trace —
or in formal term, whether additionally Vo. (My ==y My AM; +—y) & (M} =5 M A
M; +—ny/). However the example in Figure 2.1 should intuitively not be asynchronous
as one component could deadlock in the implementation which nonetheless has the same
completed traces as the original net, i.e. none. So completed trace equivalence won’t
provide the distinction we want either. We need some notion of justice, which forces
transitions to fire ultimately if continuously enabled. As noted in [18], justice in linear
time is best described using causality respecting equivalences.

Thus we will consider two nets equivalent if the sets of visible pomsets obtained from
their respective maximal processes are equal. The resulting equivalence relation respects
causality and parallelism and yields a just semantics.

Definition 2.8
A labelled partial order is a structure (V, T, <,l) where
— V' is a set (of vertices),
— T is a set (of labels),
- < CV x Vis a partial order relation and
— 1:V — T (the labelling function).
Two labelled partial orders o = (V,T,<,l) and o = (V',T,<' ') are isomorphic,
o~ o, iff there exist a bijection ¢ : V — V'’ such that
-~ YveV.l(v)=1U(p(v)) and
~Vu,veV.ou<ve pu) < o).

Definition 2.9 Let o = (V,T, <,l) be a partial order.
The pomset of o is its isomorphism class [0] := {0’ | 0 = 0'}.

By hiding the unobservable transitions of a process, we gain a pomset which describes
causality relations of all participating visible transitions.

Definition 2.10 Let f: (5", O, U, F', M) — (S,0,U, F, M) be a process.
The wvisible pomset of f is the pomset VP(f) :=[(O',O0,F™, f N (0" x O))] where F’*
is the transitive and reflexive closure of the flow relation F”.

MVP(N) :={VP(f)| f € MP(N)} is the set of pomsets of all maximal processes of
N.

Definition 2.11
Two nets N and N’ are completed pomset trace equivalent, N ~cppr N', if and only if
MVP(N) = MVP(N').

To consider branching time semantics, we use failures equivalence, which, while quite a
coarse branching-time equivalence, is sufficient for our means. Since our construction does
not introduce new causalities nor removes parallelism, finer branching time equivalences
should not lead to different results later on.

Definition 2.12 TLet N = (S,0,U, F, My) be a net, 0 € O* and X C O.
<o, X> is a failure pair of N iff

M, My =% M, A M, +— AVEE X. M, 355

We define F(N) := { <o, X> | <o, X> is a failure pair of N}.

Definition 2.13
Two nets N and N’ are failures equivalent, N ~p N', iff F(N) = F(N').

The following lemma might seem obvious, but it is nonetheless important, as many of the
later proofs depend on it.

2 Basic Notions

Lemma 2.1 Let N = (5,0, 9, F, M) be a net (without silent transitions) and M C S.

IfM:0>M1/\M:0>M2 then M1:M2.

Proof Lette O.

M e v B aand M M= M= (M) U,
Hence M =2 MiANM SUS M} = Mj = M. The result follows for a trace o by induction
on the length of o. O

A net N = (S,0,U, F, M) with silent transitions is called divergence free iff VM, € [My)
In € NVMs, ..., M, C S. (M —=> My~ -+ -~ M, = M, +).

3 Fully Symmetric Asynchrony

To examine the difference between synchronous and asynchronous communication, we will
give different possible definitions of how asynchronous communication can be modelled
in Petri nets. A simple and intuitive method to do this is to insert invisible transitions
between visible ones and their preplaces. This simulates that it may take time to remove
a token.

Definition 3.1 Let N = (S,0,9, F, M) be a net.
The fully symmetrically asynchronous implementation of N is defined as the net
FSI(N) := (SUS™,0,U', F', My) with

STi={s|t€O,s €t}

U :={t;|t€0O,s et} and

F':=FnN(0Ox59)
U{(s,ts) |t€O,s et}
U{(ts,s¢) |t € O,s € *t}
U{(s,t) |t € O,s€e*t}.

We will use the abbreviations °z := {y | (y,z) € F'} and 2° := {y | (z,y) € F'} instead
of *x or 2* when making assertions about the flow relation of an implementation.

To understand the behaviour of the implementation, we first describe the structure of
the reachable markings therein. Whenever the implementation enables some transition,
first some silent transitions must fire, thereby moving tokens from the original places onto
the newly introduced buffering places. To undo those silent transitions and get back the

Figure 3.1: A net which is not failures equivalent to its fully symmetrically asynchronous
implementation, N ¢ FSA(B), N € SA(B)

3 Fully Symmetric Asynchrony

original marking we define a function which maps markings of the implementation onto
markings of the original net.

Definition 3.2 Let N = (S,0,@, F, M) be anet, let FSI(N) = (SUS™,0,U’, F', My).
Let 77 : SUS™ — S be the function defined by

“(p) s iff p=s; withs, € S7,s€ S,te O
T = :
b p otherwise (p =s € 5)

Furthermore, we define a predicate which is true on all markings of an implementation
which can be reached. Additionally we provide a distance function specifying how many
silent transitions can be fired in sequence.

Definition 3.3 Let N = (5,0, 9, F, M) be anet and FSI(N) = (SUS™,0,U’, F', My).
The predicate a« C P(S U S7) is defined as a(M) = 7 (M) € [My)y AVp,q € M.
77 (p) # 7 (q). The function d : P(SUS™) — N is defined as d(M) := [M N {s|s € S,

s # @}

Using these two definitions, we can now proceed to prove basic properties of how the
implementation works.

Lemma 3.1 Let N = (5,0,9, F, My) be a net, FSIN) = SUS™,0,U’, F’, M) and
MCSuUST.

(1) (M)
(ii) a(M) = (d(M)>0«< 3IM' CSUS™. M —>psyn) M)
(111) M[G)FSI(N)M/ /\Oé(M) =Vt e d. (M\ot> Nt° =g /\T<_<M) GLOUV T<_<M,) A
a(M')
(IV) M L>Fg](]\[) M = d(M) > d(MI) A TH<M) = TH<M/)

*

(v) M[G)NnM'" = M L)*i)LFSI(N) M’

Proof (i): ByVse S.77(s) =s.

(ii): “=" d(M) > 0 = 3p € M3t € p*. By construction of FSI(N) then there exists a
M" with M[{t,})M" as a(M) and hence p; ¢ M.

‘e M Sopgyy M= 3t, € U'. M[{t,)M’. And °t, = {p} hence p € M. By
construction of FSI(N) also 3t € O. p € *t. Hence d(M) = |M N{s|s € S,s* # T}| >
[M 0 {p}| > 0.

(iii): Consider any t € GNO. Assume (M \ °t)Nt° # @. Since t° C S let p € S such that
p € MnNto. p¢ *°tas by construction of FSI(N) also p, € M and 77 (p) = p = 7 (pr)
which would violate a(M). It follows that (7= (M) \ *t) N¢* O {p} and N would not be
contact free as 7 (M) € [My)n by a(M).

10

Consider any t, € GNU'. As °t, = {p} and t,° = {p:} we have that (M \ °t)Nt° # & =
p€ M Ap € M but 77 (p) = p =7 (p:) which would violate a(M).

M =(M\{s|set,teG}H)U{s|set’ teG}
=(M\{ss|set,teGNOH\{s|tseGNU'})U
{si|ts e GNUYU{s|set’ te GNO}

Therefore

T (M) =7 (M\{s | se’t,t e GNOPH\{s|ts € GNU'})U
T {si | ts eGNUNHUT ({s|set’,t€e GNO})
=7 (M\{s;|set,teGNO})\{s|ts€eGNU'})U
{s|tseGNU'}U{s|set’,te GNO}
=77 (M\{st|se*t,te GNO}HU
{s|tse GNU'}U{s|set’,te GNO}.

Take any t € GN O and any s € *t. Then s, € M and a(M) = s ¢ M A Pu € O.
u#tAs, € M. Hence 77 (M \{s: | se€°t,t e GNO}) =7 (M)\{s | s € °t,t € GNO}.
Furthermore Vi, € GNU'. °t, = {s} ANs € M.

Thus we find
T(M)Y=7"(M)\{s|set,teGNO}U{s|set’te GNO}.

and conclude that 7 (M) 0N T (M").

We still need to prove that Vp,q € M'. p # ¢ = 7 (p) # 77 (q). Assume the contrary,
i.e. there are p,q € M' with p # ¢ A7 (p) = 77 (q). Since a(M) at least one of p and ¢
— say p — must not be present in M. Assume p € S7. Then there exist s € S;t € O such
that s, = p Aty € G and thereby 77 (p) = s. But then s € °t;, C M and by a(M) there
exists no u € O with s, € M. Since t; € G A s ¢ t,° however s ¢ M’'. Furthermore by
construction of FSI(N) Yo € OUU'. s € 77 (v° N S™) = v = s and such a v could not
fire with ¢4 in one step. Hence a(M’) if p € S.

If p € S then 7 (p) = p and by construction of FSI(N) there exists a t € G N O with
p € t° =t*. However a(M) = M € [My)y and 7= (M) 28y 7= (M) = *t C 7= (M).
Since N is contact free, then (t*\ *t)N7—(M') = @. Therefore (77 (¢) =7 (p) = pAp €
t*ANqg e M') = 7 (q) € *t. Furthermore by construction of FSI(N), °tN M’ = & and it
follows that either ¢ € S A ¢ = p or ¢ = p, for some u € O A u # t, which would violate
a(M) since °t C M = p, € M and Yo € OUU". p, € v° = °v = {p}. Hence a(M’) if
pES.

(iv): Let t, € U’ such that M[{t,})rsiayM'. Then, by construction of FSI(N), s* # @.
Furthermore °t; = {s} At;° = {s;}. Hence M = M \ {s} U{s;} and d(M') =d(M)—1A
(M) =1 (M).

11

3 Fully Symmetric Asynchrony

(v): Assume M[G)yM'. M C S by definition of N. Then, by construction of FSI(N),
M[{t; |t € G,s € *t})psin)[{t | t € G})psivyM’. The first part of that execution can be
split into a sequence of singletons. [l

After those basic properties are established, we can use them to prove more intuitive
corollaries.

Lemma 3.2 Let N be a net.

FSI(N) is divergence free.

Proof By Lemma 3.1 (i), (ii), (iii) and (iv). O
Lemma 3.3 Let N =(S,0,9, F, M) be a net.

If N is contact free, so is FSI(N).
Proof By Lemma 3.1, (i) and (iii). O

The following lemma states that the original net and the implementation can perform
the same actions, provided that the final marking is an original marking. The correctness
of this depends on the fact that all newly introduced deadlock situations will have some
token “stuck” in a buffer place.

Lemma 3.4 Let N = (S5,0,9,F, M) be a net, FSI(N) = (SUS™,0,U’, F', M) and
M, € [My)n, My C S.

* G T Ok

() (My <o M) & (My = gy~ st —— sy Mo)
(11) (M1 :o>N Mg) = (M1 :U>FS](N) Mg)

Proof (i): “=" By applying Lemma 3.1 (v). “<" By using Lemma 3.1 (i), (v)
and (iii) we find that a(M;) A a(Ms). The result then follows from Lemma 3.1 (iii), as
TH(Ml) = M1 and TH(MQ) = M2 since both M1 Q S A M2 Q S.

(ii): By complete induction on the length of o. For o = ¢ “=" is trivially true and “<” also
holds because Vt € U’. t*NS™ # @& and therefore VM) C S. M, :E>FSI(N) M} = M} = M.

Let t € O. If (ii) holds for some o then it also holds for ot due to (i) with G = {t}. O

In addition to the above lemma it is also the case that the implementation can always
simulate the original “optimally” in the sense that no superfluous transitions are fired and
every marking which existed in the original trace is also reached by the implementation.

12

Lemma 3.5 Let N = (5,0,9, F, M) be anet and let FSI(N) = (SUS™,0,U’, F', My).

Let M C SUST,0 € O* such that My == pgyvy M and let Mg := 7 (M).
Then MO :o>FS](N) Ms and ﬂMé g S. Mé 7& MS AN MO :U>F5](N) Mé

Proof By induction over the length of o using Lemma 3.1 (i) and (iii) My ==y 7 (M)
wherefrom by using Lemma 3.1 (v) also My == pgv) 7 (M).

Assume any other M’ C S exists such that My == psyvy M. Then My ==y 7 (M').
But by Lemma 2.1 then 7 (M’) = 77 (M). Since M C SAM' C S then M =M. O

All those lemmas above can be combined to the already mentioned fact that the only
difference in behaviour between the original net and its implementation is the introduction
of new deadlocks, which formally result in additional failures.

Proposition 3.1 Let N = (5,0,a, F, My) be a net.

Then .Z (N) C .F(FSI(N)).

Proof Let FSIN) = (SUST,0,U", F', My). Let <o,X> € F(N),t € X and let
M; C S such that My ==n M,.

By using Lemma 3.1 (i), (iii) and (v) in an induction over o, also My == pgyn) M.
Using Lemma 3.1 (iv) and (ii) there exists a marking M| such that M J—>F51(N) A
T (M) = 77 (M) A a(My).

Consider a transition ¢t € X. Assume that ¢ is not refused in M| by FSI(N), that is
M, € SUST. Mi[{t}) psion) Ms.

Then by Lemma 3.1 (iii) and 7= (M) = M, immediately M, ~ 7= (Ms,) which is a
contradiction. Therefore <o, X> € FSI(N). O

Finally we define the class of nets which are asynchronous, by testing whether if they
where to be implemented asynchronously they would still function correctly. Actually we
define multiple classes as different equivalence relations lead to different results.

Definition 3.4
The class of fully symmetrically asynchronous nets respecting linear time equivalence
is defined as FSA(L) :== {N | FSI[N) ~cpr N}.
The class of fully symmetrically asynchronous nets respecting branching time equiva-

lence is defined as FSA(B) :={N | FSI(N) ~p N}.

We also have obtained the following semi-structural characterisation of FSA(B).

13

3 Fully Symmetric Asynchrony

Definition 3.5
A net N = (S,0,9,F, My) has a partially reachable conflict iff It,u € O. t # u A
*tN*u# @ and IM € [My). *t C MV *u C M.

The correctness of the characterisation is proven below.

Theorem 3.1
A net N =(5,0,9, F, M) is in FSA(B) iff N has no partially reachable conflict.

Proof Let FSI(N)= (SUS™,0,U', F', My).

“=" Assume N has a partially reachable conflict. Then there exist t,u € O, t # u,
o € O* and M C S such that My ==y M, *tN°u # @ and *t C M V *u C M. Without
loss of generality assume that *¢t C M.

For every <o, X> € .%(N) we then know that ¢ ¢ X by Lemma 2.1.

However My == pgrvy M by Lemma 3.4. Let p € *¢ N *u. Then, by construction of
FSI(N), there exists M; C SUS™ with M[{u,})M;, p ¢ M; and since ¢t # u also p; ¢ M.

Now let My C S U ST such that My —— gy Ma A My #;SI(N) (which exists according
to Lemma 3.2). Since Vv € U'. p ¢ v* A (p, € v* = p € *v) we know that p, ¢ M.

But then M, 19, and there exists a failure pair <o, {t}> € F(FSI(N)). We thereby

know that Z(FSI(N)) # Z(N).

“<" Assume N ¢ FSA(B). Then #(FSI(N)) # % (N) and Z (FSI(N))\ % (N) # @ by
Proposition 3.1.

Let <o, X> € Z(FSI(N))\ .#(N). Then there exists an M; C S U S” such that

Moy =Z5 psivy My A My = AV € X. My 425,

By Lemma 3.5 then also My == pgy) 7 (M1) and by Lemma 3.4 My ==y 7 (M;).

Let t € X such that 7= (M;) ==y (which exists, otherwise <o, X> € .Z(N)). Let p € *t
such that p, ¢ M; (such p; exists, otherwise M ﬂ>FSI(N)).
Since 7 (M) =L v it follows that p € 77 (M;). But p ¢ M; otherwise M; —— gy

which would be a contradiction. Hence there must exists some v € O with p, € M;. By
construction of FSI(N) then p € *u.

But then t,u € OA*tN*u# SATT (M) € [My)y A°t C 7 (M;) and N has a partially
reachable conflict. O

From those results it is already visible that when considering branching time equivalences
only very simple nets are failures equivalent to their fully symmetrically asynchronous
implementation. An example which already fails is shown in Figure 3.1.

14

The net class FSA(L) is substantially larger. However it coincides with some other class
of nets which will be defined in the next section. The proof of that coincidence must
naturally go after the definitions of the other net class and is contained in the next
section.

15

4 Symmetric Asynchrony

Since we are interested in more substantial results regarding branching time equivalences,
we change our definition somewhat and only insert invisible transitions wherever a tran-
sition has multiple preplaces, when the synchronous removal of tokens is really essential.

Definition 4.1 TLet N = (S,0,@, F, My) be anet. Let O® = {t |t € O, |*t| > 1}.
The symmetrically asynchronous implementation of N is defined as the net
SI(N):=(SUST,0,U’, F', My) with

STi={s |t O’ sc t},

U= {t, |t €0 s¢c "t} and
F':=Fn((0x8)U(Sx(0\0")
U{(s,ts) |t €O’ sec*t}
U{(ts,5) | t € 0% 5 € °t}

U{(ss,t) |t €O’ se"t}.

The effect of this transformation can be seen in Figure 1.1. A discussion in what sense this
new transformation is consistent with intuition follows later, after the details are made

more clear.

Similar to Section 3, we use °z and z° if the flow relation of the implementation is
described. As before we establish basic properties of our transformation which will be
useful later on. To do so, we again wish to undo the effect of extraneous 7-transitions.
The function to do so is the same 77 defined earlier.

It turns out that the basic principles of Lemma Lemma 3.1 also holds for this modified
version of asynchronous implementation. However the invariant and distance functions
need slight modification.

Definition 4.2 Let N = (5,0, 9, F, My) be a net and SI(N) = (SUS™,0,U’, F', My).
The predicate 5 C P(S U ST) is defined as (M) & 77 (M) € [My)n AVp,q € M.
77 (p) # 7 (q). The function e : P(SUS™) — Nis defined as e(M) :== [MN{s|s € S,
3t e s [°t] > 1}.

16

Lemma 4.1 Let N = (5,0,9, F, M) be a net, SIN) = SUS™,0,U’, F', M) and
MCSUST.

(i) B(Mo)
(11) ﬁ(M) = (G(M) >0 < dM CSUS™. M L)SI(N) MI)
(iii) M[G)synyM' NB(M) =Vt € G. (M \°t)Nt° =S AT~ (M) 0N T (M) A
BM’)
(iv) M g M’ = e(M) > e(M') A7 (M) = 7= (M)

(v) MIG)wM' = M "5 T o M

Proof (i): ByVse S.77(s) = s.

(ii): “=" e(M) > 0= Ip € M3t € p*. |*t| > 1. By construction of SI(N) then there
exists a M’ with M[{t,})M' as (M) and hence p; ¢ M.

‘e M gy M= 3t, € U M[{t,)M’. And °t, = {p} hence p € M. By
construction of SI(N) also 3t € O. p € *t A|*t| > 1. Hence e(M) = |[MN{s|s € S, 3t € s°.
°t] > 1} = |M 0 {p}| > 0.

(iii): Consider any t € GNO. Assume (M \ °t) Nt° # @. Since t° C S let p € S such
that p € (M \ °t) N¢°.

There are two cases:

|*t| = 1: If p € *t also p € °t wich would be a contradiction with p € M \ °t. Otherwise
p¢*tand (77 (M)\ *t)Nt* 2 {p} and N would not be contact free as 77 (M) € [Mo)y

by B(M).

|*t| > 1: p ¢ °t as by construction of SI(N) also p, € M and 77 (p) = p = 7 (p¢) which
would violate 3(M). Hence (7 (M) \ *t) N t* D {p} and N would not be contact free as
77 (M) € [Mo)n by B(M).

Consider any t, € GNU'. As °t, = {p} and ¢,° = {p:} we have that (M \ °t)Nt° # & =
p€ MAp € M but 77 (p) = p=7"(p:) which would violate 3(M).

Let O':={t |t € O,|°t| > 1} and O™ :={t | t € O,|*t] = 1}.
M =(M\{s|se’t,te G}HU{s|set’ teG}

=M\ ({si|set,tcGNO}U{s|sct,tc GNO™}U{s|t, € GNU'}))U
{s¢|ts e GNU'U{s|set’,te GNO}

17

4 Symmetric Asynchrony

Therefore

T (M) =17 (M \({s¢|]s € *t,t e GNO"}U{s|s € *t,t € GNO™}IU{s|t, e GNU'})) U
T {s | ts eGNUNHUT ({s|set’,t€ GNO})
=77 (M\({s]s €*t,t € GNO*YU{s|s € *t,t € GNO™}U{s|t, € GNU'}))U
{s|tse GNU'}U{s|set’te GNO}
=77 (M\ ({s;|set,t cGNO"}U{s|sect,tc GNO™}))U
{s|ts e GNU'}U{s|set’te GNO}.

Take any t € GNO® and any s € *t. Then s, € M and B(M) = s ¢ MAfu € O. u#tA
sy, € M. Take any t € GNO™ and the s € *t. Then s € M and 3(M) = fu € O.s, € M.

Hence

M\ ({s;|s€t,tcGNO*YU{s|set,tcGNO™Y}))
“(M\{s|set,tecGNO}U{s|set,tc GNO™Y})
“(M)\{s|sette GNO}.

Furthermore Vt, € GNU'. °t, = {s} ANs € M.

Il
S8 9

Thus we find
T(M)Y=7"(M)\{s|set,teGNO}U{s|set’te GNO}.

and conclude that 7= (M) 29y 7 (M).

We still need to prove that Vp,q € M'. p # ¢ = 7 (p) # 77 (q). Assume the contrary,
i.e. there are p,q € M’ with p # ¢ A7 (p) = 77 (q). Since B(M) at least one of p and ¢
—say p — must not be present in M. Assume p € S7. Then there exist s € S;t € O such
that s, = p Aty € G and thereby 77 (p) = s. But then s € °¢, C M and by G(M) there
exists no u € O with s, € M. Since t; € G A s ¢ t,° however s ¢ M’'. Furthermore by
construction of SI(N) Vv € OUU’. s € 77 (v°NST) = °v = s and such a v could not fire
with ¢s in one step. Hence S(M') if p € S™.

If p € S then 77 (p) = p and by construction of SI(N) there exists a ¢t € G N O with
p € t° =t*. However B(M) = M € [My)y and 7= (M) 28y 77 (M") = *t C 7= (M).
Since N is contact free, then (¢*\ *¢) N7 (M’) = @. Therefore (77 (q) = 77 (p) = p A
pEt*Nge M) =1 (q) € *t.

If |*t| > 1 by construction of SI(N), °t N M' = @ and it follows that either g € SAg=1p
or ¢ = p, for some v € O Au # t, which would violate 5(M) since °t C M = p; € M and
Yo e OUU'. p, € v° = °v={p}. Hence B(M') if p € S. Otherwise *t = {77 (q)} = {p}
and also °t = {p}. But p was assumed to be not in M.

Hence g(M') if p € S.

18

(iv): Let t; € U’ such that M[{t,})sqn)yM’. Then, by construction of SI(N), t € s* A
|*t| > 1. Furthermore °t; = {s} At,° = {s;}. It follows that M' = M \ {s} U {s;} and
eM')=eM)—-1ANT(M") =1"(M).

(v): Assume M[G)yM'. M C S by definition of N. Let O° := {t |t € O, |*t| > 1}. Then,
by construction of SI(N), M[{t; |t € GN O’ s € *t})sm[{t |t € G})srnyM'. The first
part of that execution can be split into a sequence of singletons. 0

As Lemma 4.1 is basically the same as Lemma 3.1 it should come as no surprise that the
corollaries also hold.

Lemma 4.2 Let N be a net.

SI(N) is divergence free.

Proof By Lemma 4.1 (i), (ii), (iii) and (iv). O
Lemma 4.3 Let N = (S,0,9, F, M) be a net.

If N is contact free, so is SI(N).
Proof By Lemma 4.1, (i) and (iii). O

The following lemma shows that all behaviours of N can be simulated by SI(N) and vice
versa for visible behaviours of SI(V). Note however that SI(/N) might be able to deadlock
in more cases than /N. One typical case is shown in Figure 4.1.

Lemma 4.4 Let N = (5,0,9,F, M) be a net, SIN) = (SUS7,0,U’, F', M) and
M, € [My)n, My C S.

* G *

1) (M S M) & (My gm0~ 10— sav) M)
(11) (M1 :U>N MQ) = (M1 :0>SI(N) Mz)

Proof Completely parallel to Lemma 3.4, using Lemma 4.1 instead of Lemma 3.1. [J

Lemma 4.5 Let N = (S,0,9, F, M) be a net and let SI(N) = (SUS™,0,U’, F', My).

Let M - S'U ST,O' € O* such that Mo :o>5](N) M and let MS = T<_(M)
Then MO :U>S[(N) MS and ﬂMé Q S. Mé 7é MS AN MO :U>S[(N) Mé

Proof Completely parallel to Lemma 3.5, using Lemma 4.1 instead of Lemma 3.1. [J

19

4 Symmetric Asynchrony

@ O O

Figure 4.1: The implementation reached a deadlock, which was not possible before, hence
N ¢ SA(B). But N € AA(H, B).

Proposition 4.1 Let N = (5,0, 9, F, My) be anet and SI(N) = (SUS™,0,U’, F', My).

Then .Z(N) C Z(SI(N)).

Proof Completely parallel to Proposition 3.1, using Lemma 4.1 instead of Lemma 3.1.
O

Similar as we did for interleaving behaviour in Lemma 4.4, we also relate the possible
processes of a net to those of its implementation. Due to time constraints the proofs and
basic properties cannot be presented as elaborate as we did for the interleaving case.

Lemma 4.6 Let N = (S,0,9,F, M) be anet, Ny = (S§, Oy, @, Fy, Mys) an occurrence
net and f : Sy UOy — SUO a function. Let SI(N) = (S U S7,0,U’, F', M) and
Let SI(f): Sy USFUO;UU; — SUSTUOUU be the function defined by

Sy iff z = p, € S} with s = f(p) and t = f(u)
SI(f)(z) := <t iff v =, € U} with s = f(p) and t = f(u) .

f(z) otherwise

Then f is a process of N iff SI(f) is a process of SI(N).

Proof “=": Assume f is a process of N. We show that SI(f) is a process of SI(N).

SI(f)(Sy) = f(Sp) €8

SI(f)(S}) ={st | pu € 57, 5= f(p),t=f(uw)} CSUST
SI(f)(Of) = f(Oy) CO

SI(f)(Up) = {ts | up € Uy, s = f(p),t = f(u)} C U
SI(f)(Moy) = f(Moy) = My

We show that SI(f) is injective over slices.

20

Let C be a slice of SI(Ny), then 77 (C) is a slice of Ny by construction of SI(Ny). Let
z,y € C such that SI(f)(z) = SI(f)(y).

If x € Sy then by construction of SI(f) also y € Sy, f(z) = SI(f)(x) = SI(f)(y) = f(y)

and, since f is injective over slices, z = y.

Else € S} and by construction of SI(f) also y € S7. Therefore let p, = x,q, = y and

se = SI(f)(x) = SI(f)(y). Then f(u) = f(v) =t A f(p) = f(q) = s and thereby p = g as
f is injective over slices and p = 77 (py,) Aq¢ = 77 (¢y). Yet u € p* and v € p® but |p*| =1
and hence v = v. Therefore p, = q,.

It remains to be shown that SI(f) respects pre- and postsets of transitions.

LettEOfUU}.

SI(f) respects the postset of ¢: If ¢ € Oy, then S](f)(t): = f(t)* = f(t*) = SI(t)(t*) as
t* C Sy Else t = u, € Uy and SIf)()* = (f(w)sm) = {F®)sw} = SIHEpa}) =

SICP)(E®).

()T espects the preset of t: ¢t € Of \ O} ort € O} or t € Uj. If t € Of \ O}, then
SIN(E) = *f(t) = (1) = SI(f)(*t) as *t C Sf. Ifte Of then SSICF)() = *f(t) =
[F(s)r | (f(5), (1)) € F} = SIF)(*). 1 t = u, € U} then *SIF)(E) = * (F(w)g0) =
{f(p)} = SI(F){p}) = SIF)(*t).

“«<”: Assume SI(f) is a process of SI(N). We show that f is a process of N.

f(Sp) = SI(f)(Sy) CSUST A f(Sf) CSUO hence f(Sy) C S
f(Or) = SI(f)(Oy) €O
f(Moy) = SI(f)(Moy) = My

We show that f is injective over slices.

Let C be a slice of Ny, then C is also a slice of SI(Ny) by construction of SI(Ny). Let
z,y € C such that f(z) = f(y). Then also SI(f)(z) = SI(f)(y) since z,y € Sy. Since
SI(f) is injective over slices, = = y.

It remains to be shown that f respects pre- and postsets of transitions.

Let t € Oy.

f respects the postset of ¢ f(t*) = SI(f)(t*) = SI(f)(t)* = f(¢)* as t* C 5.
f respects the preset of t:

Let 0" :={t € O |1 <[t} and O} := {t € Oy | 1 < [*t]}.

If t ¢ O} then f(°t) = SI(f)(*t) = *SI(f)(t) = *f(t) as {s | (s,t) € F}} C Sy.

Else t € O}. Let *z = {y | (y,z) € F;} and z* = {y | (x,y) € F}}. By construction of
SI(f), Vv € O°. *v ="°°v, Yu € O}. *u = ***u and similarly for the postsets. Since SI(f)
is a process, Yu € O%. SI(f)(*u) = °SI(f)(u) and similarly for the postset.

21

4 Symmetric Asynchrony

Thereby

fCt) = SI(F)(*t) = SIH) () = °SIf)(71) = °SI(f){u € Op WU [w"N™t # }) .

By construction of SI(IN), there exists exactly one u € Oy U U} for each p, € *t such
that p; € u*, namely u = t,. Furthermore there exists exactly one v € O U U’ with

SI(f)(p:) € v°, namely v = f(t)) = SI(f)(u). Hence Vp, € *t. SI(f)(*pe) = °SI(f) (D).
Thereby we have °SI(f)(**t) = °°SI(f)(*t) = °°°SI(f)(t) = *SI(f)(t) = * f(t). d

SI(f) will be used later with the same definition as in Lemma 4.6.

Not only can every visible behaviour of a net be simulated by its implementation, but the
only difference between the sets of possible behaviours is the existence of new possible
deadlocks in the transformed version of the net.

Lemma 4.7 Let N = (S,0,9, F, M) be a net.

Then MVP(N) C MVP(SI(N)).

Proof Let f be a maximal process of N. Let Ny = (S¢, 0y, d, Fy, My;) be the occur-
rence net f is based on. Then SI(f) is a process of SI(N) according to Lemma 4.6 based
upon some occurrence net SI(Ny) = (S USF, O, Up, '}y, Moy).

We show that SI(f) can be extended to a maximal process of SI(INV) without changing
the visible pomset.

Note that SI(Ny)° = N} by construction of SI(Ny). Assume there exists a t € Oy such
that SI(Nf)O :t>5](N).

If |°t| = 1 then *t C N]‘? because Yu € Uy. u® C S} but °t C S;. Thus f would not be
maximal.

In the case of |*t| > 1, consider a place p, € *t. Since SI(N;)° C Sy and by construction

of SI(Ny) it follows that SI(Ny)° SR U S U, ;S *t, = {p}. As above Yu € Uy.
u® C S}. Hence the invisible transitions in the first —T." cannot have marked p and thus
p € SI(Ny)°. Repeating this argument for each p; € °t we find that {s | (s,t) € F'} C N3.
Thus f would not be maximal.

Therefore no visible transition can subsequently get enabled in SI(Ny) if f is maximal.
Furthermore Vt € Uy. *t C Sy At® C S} and hence only finitely many invisible transitions
are possible. Thus SI(f) can be extended to a maximal process of SI(N) with V P(SI(f)) =
VP(f). O

By observing which nets preserve their behaviour if implemented asynchronously, we can
classify them as follows.

22

Definition 4.3

(i) The class of symmetrically asynchronous nets respecting linear time equivalence
is defined as SA(L) := {N | SI(N) ~cpr N}.
(ii) The class of symmetrically asynchronous nets respecting branching time equiva-

lence is defined as SA(B) := {N | SI[N) ~p N}.

We return to the question of how large FSA(L) is. It turns out that FSA(L) = SA(L)
as shown in the following lemma. We only prove one direction, as the other is intuitively
clear. Requiring more asynchrony should not enlarge a class of nets.

Proposition 4.2 Let N be a net with SI(N) ~cpr N.

Then FSI(N) ~cpr N.

Proof Let SI(N)= (SUST,0,U’, F', My) and FSI(N) = (SUS™,0,U", F", My). Let
g € MP(SI(N)) with the associated occurrence net N, = (S,US7, Oy, Uy, Fy, My,) where
s€ Sy g(s) €S

Then the net Ny, = (S, U S7, Oy, Uy, F, My,) is an occurrence net and the function h
based upon it is a process of FSI(N) if defined as follows:

O™ = {t|t €0y {s](s,1) € Fy}| =1}

Sp =S, U {s¢] (s,t) € Fy,t e o}
Uy :=U, U{ts | (s,1) € F,,t € O™}
Fy = (F,\{(s,t) | (s,1) € F,,t € O™}

U{(s,ts), (ts, 50), (50,1) | (5,1) € F,, t € O™}
g(t)g(s) ifr=1t, € Uh\Ug
h(z) = qg(s)gwy ifaz=s€S7\S]
g(x) otherwise

First we show that indeed N}, is an occurrence net: Since (z,y) € Fj = (v,y) € F;
we have that Vz,y € S, US] U O, UU,. (z,y) € F;f = (y,x) ¢ F;". Furthermore
Vse S, US]. {t|(t,s) € Fp} ={t | (t,s) € F,} and thus Vs € S, U S7. |*s| < 1 and also
Moy, = {s|*s = @}. Since Vs € S,. |s*| = 1 also Vs € S, U Sf. [s°| < 1.

Thus Ny, is an occurrence net. We now continue by proving that A is indeed a process of
FSI(N).

23

4 Symmetric Asynchrony

h(S, U SE) = g(Sy) U{g(s)g | (5,t) € F,,t € O™}
CSUS™U{s | (s,t) e F'|°t] > 1}
=SuSs™

h(Og) = g(Og) co
h(Un) = g(Uy) U{g(t)ges) | (s,1) € Fy,t € O™}
CU"U{ts | (s,t) € F',|°t] > 1}
— UI/
h(Mog) = g(Mog) € Mo

Let C be aslice of N,,. Assume there exist p,q € C,p # q with h(p) = h(q). If p = s, € S},
let p' = s otherwise let p’ = p and similarly for ¢’. Because Vs € S,. |s*| < 1 we have
that p’ # ¢'. Since h(p) = h(q) also h(p') = h(¢’). But p/,q' € S, and hence ¢g(p') = g(¢').
Because (p',p) € Iy and (¢',q) € F; we know that neither (p',¢’) € F nor (¢',p') € F.
Thus the set {p/,¢'} can be extended to a slice of N, over which g would not be injective.
This would be a contradiction and therefore h must be injective over slices.

h respects the postset of transitions: For every t € O, U U,

h(t*) = h({s | (t,5) € Fg}) = g({s | (t,5) € Fg}) ={s | (9(t),5) € F'} = h(t)",

whereas for every t € U, \ Uy, say t = u,, we have
h(up®) = h({pu}) = {9(0)ge} = 9(Wg()® = h(uy)* .

h respects the preset of transitions: For every t € U, U O, \ O™
h(°t) = h({s | (s.t) € Fy}) = g({s | (s.1) € Fy}) = {s | (s,9(t)) € F'} =*h(t)
whereas for t € O™
h(*t) = h({se | (s,1) € Fg}) ={g(s)gw | (s,1) € Fo} = {s¢ | (5,9(t)) € F'} = *h(t)

and for t € Uy, \ U,, say t = u,, we have
h(*t) = h({u}) = {g(u)} = *g(u)gm = "h() .

Additionally h can be extended to a maximal process with the same visible pomset by
executing remaining elements of U” \ U".

Conversely let h € MP(FSI(N)). Let the associated occurrence net be N, = (S, U
Shs Ony Un, Fiyy Mop).

24

Then the net Ny = (Si U ST, O, Uy, Iy, Myy) is an occurrence net and the function g
based upon it is a maximal process of SI(N) if defined as follows:

U .= {t|teU,h(t) e U\ U}

Sy =S\ {p | (u,p) € Fy,ucU"}

U, :== U, \U™

Fy = (Fi\
({(s,w), (u,p) | s € Sp,u € U™, p € ST}U
{(p.) | (u,p) € Fy,u € U™ p € Sf,t € O4}))

U{(s,t) | {(s,u), (u,p),(p,t)} C Fu,s € Sp,t € Op,u € U™, p € S}
gZ:h fShUS;UOhUUg

From the definition we get F,;f C Fyf, thus F;} has no cycles. Additionally F, N ((O4 U
Ug) X (SpUST)) = Fi N ((Oy UUy) (xS, UST)) and therefore Vs € S, UST. |*s| < 1 and
Mo, = {s[*s = @}. Assume that 3s € S, US]. {t | (s,t) € F,}| > 1. Clearly, this
can only occur due to the last clause of F;,. However the other two clauses would have
removed any post-transitions of s before. Hence Vs € S, U S7. [s*| < 1.

Therefore N, is an occurrence net. We now prove that g is a maximal process of SI(N).
g(ShUSy) =h(S,US;) S SUST

9(On) = h(On) € O

9(Uy) h(Uh)\{ts|8€S,t€0,l't|>1}§U’
9(Mon) = h(

Let C be a slice of N,. C'is then also a slice of Nj, because F; N(S,US;U0,UU,)* = F; .

If p,g € C;p # q,9(p) = g(q) then also h(p) = h(q) which is a contradiction since h is
injective over slices. Hence g must be injective over slices as well.

g respects the postset of transitions: For every t € O, U U,

g(t%) = h(t*) = h(t)" = g(1)" .

g respects the preset of transitions: If ¢ € Oy, [*t| > 1V t € U, then

If t € Oy, |*t| <1 then

g9(*t) =h({s | {(s,u), (u,p), (p,1)} € Fp,u € Un,p € Si})
:{8 | (Sv h’(u>> € Fl/v {(u,p), <p7 t)} C Fh,u€Uppe€ S;;}) :

25

4 Symmetric Asynchrony

However every place s, € S™” has exactly one pre-transition, namely ¢,, and thus

{s] (s, h(u)) € F",{(u,p), (p,1)} € Fr,u € Up,p € Si})
= {s [{(s;u), (u, h(p))} € F", (p,t) € F,u € U",p € Sp})
={s [{(s,u), (u,p), (p. (1))} C F",ue U",pe §7"})
={s|(s,h(t)) € F'}) ="*g(t) .

To prove that g is maximal, assume N would enable some transition ¢ in SI(N). Ift e U,
then ¢t C S and the same ¢ would also be enabled in FSI(N) by Ng, hence t € O. If
|*t| > 1 again ¢ would be enabled in FSI(N) by Ny. Let *t = {s} € N, N S. But then
either s € Ny or s, € Ny, and either ¢, or ¢ would be enabled in FSI(N) by Ny, which is
a contradiction. Hence g must be maximal. (l

The question remains however why FSA(B) is so small. The motivation for branching
time equivalences is the implicit assumption that the system under consideration will later
be embedded into an environment which might prohibit execution of some actions.

If this embedment is modelled within the net itself however, the net will often cease
to be symmetrically asynchronous with respect to linear time as the communication of
the net with the environment creates backward branching transitions. Unsurprisingly
this happens exactly if the net or the environment is not failures equivalent to its fully
symmetrically asynchronous implementation.

This observation hints that our definition of symmetric asynchrony might be a bit off
although it gives nicer results. If the communication with the environment is assumed to
be synchronous however, the backward branching nature of the communicating transitions
poses no problems, and our construction of SI(N) describe the situation.

After the connection between FSA(B) and SA(B) have been cleared up, we now give a

semi-structural characterization of SA(B).

Definition 4.4
Anet N = (S,0,9, F, My) has a partially reachable N iff It,u € O.t # uN*tN®u # SA
1t > 1A3M € [My)n. *t C MV *uC M.

Theorem 4.1
A net N without silent transitions is in SA(B) iff N has no reachable N.

Proof “=" Suppose N = (S,0,9d,F, My) has a reachable N. We will show that
SI(N) #r N. Since N has a reachable N, 3t,u € O. t ZuA*tN®u # SN[t > 1A
dM € [M())N. ‘teMVoue M.

Let p € *tN°u and ¢ € *t with g # p. Then p € M. Let SI(N) = (SUS™,0,U’, F', My).
By Lemma 4.4 there exists a 0 € O* with My == M.

There are two cases:

26

Case 1, *u C M: We will show that <o, {u}> € Z(SI(N)) but <o,{u}> # .Z(N).
Since N has no silent transitions by Lemma 2.1 whenever My ==y M’ then M’ = M.

Since M ﬂw we have that <o,{u}> ¢ .Z(N).

Let My € S US™ such that M MSI(N) M; (such an M, exists by construction of
SI(N)). Note that p ¢ M;. SI(N) is divergence free by Lemma 4.2. So there exist
MQ,Mg,...,Mn Q S U S™ such that M1 RN M2 RN M3 4 ... 5L Mn/\Mn RN for
some n > 1. There is no v € U’ with p € v° by construction of SI(N). Hence p ¢ M, for
1< <n.

If |*u| = 1 then p € °u. Otherwise there exists p, € S™ with p, € “u. In this case also
pu & M; for 1 < i <n by Lemma 4.1 (i) and (iii) as p, € M; for all 1 <i <n.

In both cases M, —{/ﬂSI(N). Hence <o, {u}> € Z(SI(N)).

Case 2, *u ¢ M: Then *t C M. Thus 3¢ € *u\ *¢t and |*u| > 1. This case proceeds as
case 1 with the roles of ¢t and u exchanged.

“<" We will show that if SI(N) %2 N then SI(N) has a reachable N. Let SI(N) = (S U
S7.0,U", F', My). 1t F(SIN)) # F(N) then F(SIN))\.Z(N) # & by Proposition 4.1,
Let <o, X> € Z(SI(N))\ Z(N). Then My ==y by Lemma 4.5 and Lemma 4.4. Let
u € X such that My = (which exists, otherwise <o, X> € #(N)). Let M; C SUS™

such that My == gy My AN AM, +— (which exists by Lemma 4.2).

If [*u| = 1, let {p} = *u and we have p ¢ M; (otherwise M, ﬂ>51(N)). On the other
hand, My, ==y and thus, according to Lemma 4.5 and Lemma 4.4, p € 7~ (M;). Then,
by construction of 7, there must exist some ¢, € U’ with p € *t (which removed the
token from p). By the construction of SI(N) then ¢ € O and, since |*t| > 1, also ¢ # w.

Otherwise |[*u| > 1. Let p € *u such that p ¢ M; A p, ¢ M; (such p exists, otherwise

My —— gy or My ﬂSI(N)). As above My == and p € 7= (M;). Then by construction
of 77, either p € M, which is not the case, or there exists some p, € M; witht € OAp € °t.
But p, ¢ M; and hence t # u.

It follows in both cases that ¢, u € OAt # uA*tN®u D {p}A|*t] > 1AM € [My)nA°u C M.
U

It turns out that our net classes SA(B) and SA(L) are strongly related to the following
established ones [3].

Definition 4.5 Let N = (S,0,2, F, M) be a net.
(i) N is free choice, N € FC, iff Vp,q € S. p*N¢* # @ = |p°*| = |¢°| = 1.
(ii) N is extended free choice, N € EFC, iff Vp,q € S. p* N q® # @ = p°* = ¢°.

(iii) N is behaviourally free choice, N € BFC, iff Yu,v € O. *unN*®v # & =
(VMl € [M0> ‘u g M1 & % Q Ml)

27

4 Symmetric Asynchrony

Figure 4.3: N € EFC, N ¢ SA(L),
AA(M,B), N € AA(H, L),
TSPL

N
N

The class of free choice nets is strictly smaller than that of symmetrically asynchronous
nets respecting branching time equivalence.

Proposition 4.3

FC C SA(B)

Proof “C” We prove that if N has a reachable N it is not in FC. Let t,u € O
such that *t N °*u # T At > 1. Let p € *t N °u and let ¢ € °t with p # ¢. Then
p,q € SNt E P Ng® A|p®| > 2. Hence N is not in F'C.

The inequality follows from the example in Figure 4.2, which is not in F'C' and trivially
in SA(B) as no steps are possible. O

The class of free choice nets is strictly smaller than the class of extended free choice nets.
Proposition 4.4

FC C EFC

Proof Follows from the definitions since |p*| = |¢*| = 1 Ap* N¢® # @ = p* = ¢* and
the counterexample in Figure 4.3. 3] O

The class of symmetrically asynchronous nets respecting branching time is strictly smaller
than the class of symmetrically asynchronous nets respecting linear time.

28

Proposition 4.5

SA(B) C SA(L)

Proof “C”
We show that N ¢ SA(L) = N ¢ SA(B).

Let N = (S,0,@, F, M) be a net and N ¢ SA(L). From Lemma 4.7 we already know
that MVP(N) C MVP(SI(N)). Hence let f : (S;UO;UU;) — (SUOUU’) be a maximal
process of SI(N) = (SUS™,0,U’, F', My) with VP(f) € MVP(SI(N))\ MVP(N) based
upon an occurrence net Ny = (Sy, Of, Uy, Fy, Myy).

Using f, we will construct a failure of pair of SI(N) which is not a failure pair of N.
Consider the function g := f N ((SyUOy) x (SUO)) and the occurrence net defined by
Ny = (97(5),97(0), 2, Fy, g~ (Mo)), where

(x,y) € Fy & ((x.y) € Fy V3t € Up,s € Sy, f(s) € 8™ {(2,1), (£, 5), (s,9)} C Fy) .

We now show that g is a process of N and VP(g) = VP(f).

From the definition follows directly that

Let p,q € Sy such that (p,q) € F7. Then by construction of SI(N) there exists a sequence
T0,T2, .-, Tn With YO <4 < mn. f(r;) € S of places such that

(3t € Op,u e Us,s € Sy. f(s) € STA{(ri—1,u), (u,s), (s,t), (t,1:)} C Fy)

and ro = pAr, = q. In other words, there are just these two ways in which two “original”
places can be connected in Ny.

Let C be a slice of N, and p,q € C, p #
Then C'is also a slice of Ny, since f(C) C
holds. Additionally since C' C Sy, f(p)

Hence g is injective over slices.

be two places therein, such that g(p) = g(q).
and for every pair of places in C' Equation 4.1

q
S
= g(p) = g(q) = f(q) which is a contradiction.

29

4 Symmetric Asynchrony

g respects the post-places of a transition t € g~ (O):

g respects the pre-places of a transition t € g~ (O):
If |°t| = 1 then

g9(*t) = g({s € g7 (5) | (s,1) € Fy})
(

(
=Jf{s€g™(9) | (s1) € Fr})
={seS|(s,f(t) € F})
={se5|(s,9(t) € F}) ="g(t)

If |*¢| > 1 then

g(*t) = g({s € g (5) | (s,1) € Fy})
=f({s ey (S)[FueUyspe Sy flp) €5 {(s,u),(u,p), (p,t)} S Fr})
={seS|JueUspe Sy flp)e S (s, f(u) € F' . {(u,p),(p,t)} C Fs} .

However from the construction of SI(N), we have that for each p; € S7 exists exactly one
v € U with (v,p;) € F', namely v = t,. Since f respects the pre- and postconditions of
transitions we can continue with

{s€S|[JueUype Sy flp) €S (s, f(u) € F', {(u,p), (p,t)} C Fy}
={seS|FuelpesS flp) €S {(s,u) (u, f(p)} C I, (p.t) € Fy}
={s€S|uelpes . {(s,u), (up),(pg(t)} < F}
={se S| (s,9(t) € F} ="g(t) .

That VP(g) = VP(f) follows from the definition of F, and Equation 4.1.

Thus we have that g is a process of N and VP(g) = VP(f). But per assumption
VP(f) ¢ MVP(N) so g must not be maximal.

Finally we use this property to derive the desired failure pair.
Let ¢t € O such that *¢ C N;. Such a transitions exists, otherwise g would be maximal.

A linearisation of V P(g) respecting the partial order leads to a trace o. Additionally
VP(g) = VP(f), thus alinearisation of f will result in o, too. But then 3M;. My == sy

My A My “—gpny AM;y —l{&SI(N) and My ==y N ﬁw. There from we can conclude

that <o, {t}> € F(SI(N))\ F(N) and N ¢ SA(B).

30

The inequality follows from the counterexample in Figure 4.4, the symmetrically asyn-
chronous implementation of which has the additional failure <x,{a}>. O

The class of extended free choice nets and the class of symmetrically asynchronous nets
respecting branching time equivalence are incomparable.

Proposition 4.6

EFC ¢ SA(B) A SA(B) ¢ EFC

Proof The proposition follows from the counterexamples in Figure 4.2 and Figure 4.3.
The latter ones symmetrically asynchronous implementation has the empty pomset as an
additional maximal visible pomset and is hence neither in SA(L) nor in SA(B). O

The class of extended free choice nets and the class of symmetrically asynchronous nets
respecting linear time equivalence are incomparable.

Proposition 4.7

EFC ¢ SA(L)ANSA(L) ¢ EFC
Proof Again from the counterexamples in Figure 4.2 and Figure 4.3. U

The class of extended free choice nets is strictly smaller than the class of behaviourally
free choice nets.

Proposition 4.8

EFC C BFC

Proof We prove N ¢ BFC = N ¢ EFC. Let N = (S,0,9, F, My) be a net. Let
u,v € O with *un*v # @. Let X :=*un*®v. Let My € [My) with IMs. M;[{u}) M, and
BMs. Mi[{v})Ms. Then there is some p € *v,p ¢ M;,p ¢ *u. However X is not empty
and therefore 3¢ € X. u € ¢* Av € ¢*. But then ¢* N p* O {u} # @ and p* # ¢* and
therefore N ¢ EFC. The inequality follows from Figure 4.5. [3] O

The class of behaviourally free choice nets and the class of symmetrically asynchronous
nets respecting linear time equivalence are incomparable.

Proposition 4.9

BFC ¢ SA(L) A SA(L) ¢ BFC

31

4 Symmetric Asynchrony

Figure 4.5: N € BFC, N ¢ SA(L), N ¢ EFC

Proof The proposition follows from the counterexamples in Figure 4.4 and Figure 4.5.
The latter ones symmetrically asynchronous implementation has an additional maximal
process in which b, fired once and c fires infinitely often. U

The class of symmetrically asynchronous nets respecting branching time equivalence is
strictly smaller than the class of behaviourally free choice nets.

Proposition 4.10

SA(B) C BFC

Proof “C” We show that N ¢ BFC' = N ¢ SA(B).
Let N = (S,0,9, F, My) be a net with N ¢ BFC and let SI(N) = (S,0,U’, F', M,).

Let M, € [My),u € O,v € O,s € S such that s € *v N *uA*u C M; A*v € M; (these
exist since N ¢ BF(C).

Then there exists a trace o such that My ==y M,;. Together with *u C M, it follows
that <o,{u}> ¢ F(N).

Using Lemma 4.4, My ==gyy) My. Since s € *u C M; but *v ¢ M, there exists p € *v
with p # s. Then by construction of SI(NV) there exists a transition vs € U’ (with s € *uv,,
s ¢ v,®). Thereby M. M, fo) M, with s ¢ M,. Furthermore VMs, My ——" M. s & M,
due to the construction of SI(N). Since additionally only finitely many unobservable
transitions are possible, <o, {u}> € F(SI(N)).

32

Figure 4.6: Overview of the symmetrically asynchronous net classes

The inequality follows from the counterexample in Figure 4.5, the symmetrically asyn-
chronous implementation of which has the additional failure <e,{a}>. O

The class of fully symmetrically asynchronous nets respecting branching time is strictly
smaller than the class of symmetrically asynchronous nets respecting branching time.

Proposition 4.11

FSA(B) C SA(B)

Proof If a net has no partially reachable conflict it also has no partially reachable N.

The inequality follows from the example in figure Figure 3.1. U

We now try to translate our results within Figure 4.6 into intuitive statements about
the general nature of asynchrony and synchrony and the implications to the behaviours
implementable in an asynchronous system.

Let’s start at the top of the diagram, i.e. at F'C'. Free choice nets are characterized
structurally, enforcing that for every place, a token therein can choose freely (i.e. without
inquiring about the existence of tokens in any other places) which outgoing arc to take.

This property makes it possible to implement the system asynchronously. In particular,
the component which holds the information represented by a token can choose arbitrarily
when and into which of multiple asynchronous output channels to forward said informa-
tion, without further knowledge about the rest of the system. As this decision is solely in
the discretion of the sending component and not based upon any knowledge of the rest
of the system, no synchronization with other components is necessary.

The difference between SA(B) and F'C is that in SA(B) the quantification over the places
is dropped, and the condition comes out more straightforward as: Every token can choose
freely which outgoing arc to follow. Thus, SA(B) allows for non-free-choice structures as
long as these never receive any tokens.

33

4 Symmetric Asynchrony

This also explains why BFC includes SA(B). Since SA(B) guarantees that problematic
structures never receive any tokens, all transitions contained in such structures are always
enabled together (actually they are never enabled).

However SA(L) is not contained in BF'C' as it additionally allows “temporary” deadlocks
which are guaranteed to continue after some further visible behaviour. These kind of later
to be resolved deadlocks are forbidden both in branching time semantics and behaviourally
free choice nets.

The incomparability between the left and the right side of the diagram stems from the
conceptual allowance of slight transformations of the net before evaluating whether it is
free choice or not. Specifically in the case of the net in Figure 4.3, a 7 transition can
first be introduced, which collects both tokens and then produces marks a single post-
place from which the two original transitions get the token. Thus the choice between
the two transitions is centralized in the newly introduced place and thus free again. We
don’t allow any insertion of “helping” 7 transitions, as it seems unclear to us how much
computing power should be allowed in possibly larger networks of such transitions. This
becomes especially problematic if these networks somehow track part of the global status
of the net inside themselves and thus make quite informed decisions about what outgoing
transition to enable.

A similar difference exists between our results and those obtained in [10] by Hopkins.
While we enforce a certain distributed implementation of the original net, Hopkins allows
any implementation which manages to exhibit the correct visible behaviour. Again, the
implementation might be quite elaborate and make informed decisions based upon global
knowledge of the net. While such an implementation may be a sensible choice in some
cases, it will most likely not be compositional. Since he allows far more transformations
than we do and uses interleaving semantics, his net classes include both BFC and SA(L).

34

5 Asymmetric Asynchrony

As seen in the previous section, the class of symmetrically asynchronous nets is quite
small, and precludes the implementation of many real-world behaviours, like waiting for
one of multiple input to become readable, a Petri net representation of which will always
include non free-choice structures.

Therefore we propose a less strict definition of asynchrony such that actions may depend
synchronously on a single predetermined condition. In a hardware implementation the
places which earlier could always forward a token into some invisible transitions must now
wait until they receive an explicit token removal signal from their post-transitions.

To this end we introduce a static priority over the preplaces of each transition. Every
transition first removes the token from the most prioritised preplace and then continues
along decreasing priority. To formalize this behaviour in a Petri net we insert an invisible
transition for each incoming arc of every transition. These invisible transitions are forced
to execute in sequence by newly introduced buffer places between them. Finally at one
position in this chain, the original visible transition is inserted.

An example of this transformation is given in Figure 5.1.

Definition 5.1 Let N = (S,0,9, F, M) be a net.
Let g C (S x O) x (S x O) be a priority on F' N (S x O) such that for each t € O
g N (°t x {t}) is a total order < over *t x {t}.

We write ming and minz for the place contained in its minimal and maximal element
respectively and (s + 1)} for the next place greater than s out of *¢ according to g.
We define a set of invisible transitions as X := {t; |t € O,s € *t}.

Let h: X — X UO be an injective function for which Vi, € X. h(ty) # ts = h(ts) =t
and O C h™1(X).

The asymmetrically asynchronous implementation with respect to g and h of N is
defined as Al := (SUS™,0,U', F', My) with

ST:={s;|t€O,s €, s#min,},

U':=h(X)\ O and

Fr={(s,h(t;)) |t €0,s€t}U

{(pe, h(ts)) [t € O,p= (54 1), s € *L, s # ming } U

{(h(ts),s;) |t € O,s € *t, s # min} } U
{(h(t).p) |1 € 0.5 =mintp et}

35

5 Asymmetric Asynchrony

Figure 5.1: Transformation to asymmetric asynchrony, g such that s <! p <’ g and h
such that h(ay) = a, h(b,) = b, h(by) = by, h(bs) = b

Naturally we want the implementation to behave similar to the original net. Contrary
to the earlier results and due to the choice of g and h however, it is now possible to
create implementations which have additional traces, as it is done in Figure 5.6 by the
implementation sketched.

Those problems can be circumvented if h is restricted such that h(t,) =t = s = min,.
Due to time constraints we will consider that restriction to be in place for the most
remaining parts and write AI,(/N) instead of A1, ,(N) where it is the case. Additionally
we leave the linear time case as conjectures.

We now proceed parallel to the earlier sections, by removing all tokens on S7 in a marking
of the implementation. This time however multiple silent transitions need to be undone
in sequence.

Definition 5.2 Let N = (5,0, @, F, M) be anet and AI,(N) = (SUS™,0,U’, F', M,).
Let 7 : P(SUST) — P(S) be the function defined by
TEX) = (XNS)U{s|Fte0. setATp e XNS. (p,t) <, (5,0)} -
Given a marking of the implementation, 75 will produce a marking which must have been
reachable before the current situation could ever have arisen.

Note that the application of 7= is only meaningful for markings where no two elements
of S have originated from the same transition. However implementations of contact free
nets produce only markings which fulfil this condition, as we will show below.

We first need to give the necessary invariant predicate and distance function.
Definition 5.3 Let N = (5,0,9, F, M) be anet and AI(N) = (SUS™,0,U’, F', My).
The predicate v C P(S U S7) is defined as v(M) :& 75 (M) € [My)n A Vp,q € M.

p#q=17{p}) N7=({q}) = @. The function f : P(SUS") — N is defined as
f(M):=|MnNS|.

We can now prove basic properties similar (but slightly weaker) to those in Lemma 3.1
and Lemma 4.1.

36

Lemma 5.1 Let N = (5,0,9, F, M) be a net, AI,(N) = SUS",0,U’, F', M,) and

MCSUS™.
(i) 7(Mo)
(ii) y(M) = 3M' C SUS™. M ——= 41,(nv) M' = f(M) > 0)
(iil) M[G)ar,)M’ AY(M) =Vt € G. (M\°t)yNt° = o Ar=(M) E8y 7=(M") A

(M)
(iv) M 5,00 M = f(M) > f(M') A75(M) = 7(M')

(v) M[G)xM"= M L*i)L;;Ug(N) M

Proof
(i): 75(My) = My which is trivially reachable. Furthermore Vs € S. 7(M,) = {s} and
hence Vs,p € My. s,p e SAs#p=17"{sh)Nt={p}) = {s} n{p} = 2.

(ii): Assume (M) and there exists an M' C S U ST such that Mts) 47,(vyM' with some
t € O,s € S. By construction of AI,(N) then °t; NS # @. Hence f(M) > 0.

(iii): We first prove that Vt € G. (M \ °t) Nt° = @ and v(M').

Consider any u € GNU'. Let t € O,s € S such that t, = u. Then s € *u A s € M and
u® = {s;}. Then 7<({s}) N7=({s;}) 2 {s}. Since v(M) and s € M then s, ¢ M. Hence
(M \ °u)Nu® = @.

Consider any v € G N O. Let s be the single element of °u N.S. By construction of
AI/(N) and 7, *u = 75(°u). Since by y(M) it follows that 7<(M) € [My)y and N
is contact free, we know that (7(M) \ *u) Nu®* = @. Additionally u° = u® and hence
(75(M) \ *u) Nu® = @. Note that “u NS = {s}. Since v(M) A °u C M it follows that
M N *u={s}. Thereby (M \ “u) Nu° = @.

We now want to prove that 7<(M) 2y 7= (M),

M =(M\{s|set,te G} U{s|set’ teG}
=M\ ({s|tseGNUYU{q |t e GNU',[ts| >1,g=(s+ 1)} U
{min} [t e GNO}U{g [t € GNO,[*t] >1,¢= (min, 4+ 1);})) U
{s¢|ts e GNU'}U
{plteGNO,pet’}

37

5 Asymmetric Asynchrony

Therefore

(M) =7 (M\({s|t; e GNU I U{g | ts e GO, L] > 1,g= (s + 1)} U

{min} |t e GNO}U{q |t € GNO,[*t] >1,¢= (min) +1),})) U
{s¢|ts e GNU'}U

{plteGNO,pet®})

T (M\{s |t e GNUYU{q |t e GNU L] > 1,q= (s + 1), } U
{min [t € GNO}U{q |t € GNO,°t]| >1,q = (min, + 1);})) U
{s¢|ts €eGNU'}HU

{p|teGNO,pet}

TEMN\ ({s]t, e GNUTUL{g | t, € GNU [Pt > 1q= (s +1)}
{min} |t e GNO}U{q |t € GNO,[*t] >1,q¢= (min, 4+ 1);}))) U
{s|t,e GNU" ;s € tA(p,t) <, (s,1)}U

{plteGNO,pet}.

Since Vt € GNO. min, € M A (|°t] > 1= 3g € *t. ¢ = (miny + 1) A g € M) by (M)
follows that #p € M3t € GNO. 75({p}) N7=(°t) # @ Ap # minj A (|°t] = 1V Iq €
*t. ¢ = (ming, + 1), Ap # t,). Hence

M) ="M\ {s|t: e GNUTU{q | ts € GNU',|°t| > 1,9 = (s + 1) })\

9
({miné|t€GﬂO}U{q|t€GﬂO,|°t| >1,q€'t,q7éminf}}))u

{s|t,e GNU" s € tA(pt) <, (s,t)}U

{p|teGNO,pet}

(T"(MN\({s |t € GNUTU{g [t; € GOU, It > 1, = (s + 1))\
{¢|teGNO,qe "t} U

{s|t,e GNU s *tA(pt) <, (s,t)}U

{p|teGnO,pet}.

Since t, € GNU" = (s,t) <} (s,t) and also t, € GNU AL > 1ANqg= (s+ 1), =
(s,t) <} (g,t) it follows that

T(M') = (15 (M)\
{g|teGNO,qe°t}) U
{s|t,e GNU'" ;s € *t A (p,t) g; (s,t)}U
{p|teGNO,pet}.

By construction of AI;(N) and 7< follows that t, € GNU' = {s[s € *tA(p,1) <, (s,1)} C
7<(M). Hence

(M) =(T"(M)\{p|teGNO,peth)U{p|teGNO,pet}.

38

Since N is contact free there can be no conflict on post-places of any t € GNO. By (M)

follows that Vt,u € GNO. *tN*u = @. Hence 7 (M) i TS(M).

We still need to prove that Vp,q € M'. p # ¢ = 7<({p}) N 7=({q}) = @. Assume the
contrary, i.e. there are p,q € M’ with 7=({p}) N 7=({q}) # @. Since v(M) at least one
of p and ¢ — say p — must not be present in M.

Assume p € S7. Then there exists s € S;t € O such that s, = pAt, € G. If [°t,] > 1
let 7 = (s + 1);,. Otherwise let r be a new and unused element (this avoids trivial case
differentiations).

From (M) and °t; € M follows p’ € M ATS{p'}) N75(°ts) # D =p =sVp =r.
Additionally t; € G and as s,r; ¢ t,° then s, ¢ M’'. Hence any possibly conflicting ¢
must have been created in the same step by some concurrent transition.

Consider a v € GN U’ with v # t, A 75 (v°) N 7(t,°) # @. By construction of Al (N)
and 7 then 7 (°v) N 75(°t;) # @. But then °v C M violates v(M).

Consider a v € GN O with 7(v°) N 75(t,°) # @. Let p’ € 75(v°) N 75(¢5°). Then also
p' € v®. By construction of AI,(N) follows that 7(¢,°) = 7(°ts). It hence follows that
P eTE(%ty) CTE(M).

By 75(M) 3 7<(M'") it follows that *v C 7= (M). But 7=(M) is reachable in N and
by contact freeness of N follows that (7<(M) \ *v) Nv® = &. Thereby p' € *v.

If p’ = s either s € °v and t, and v could not fire in the same step, or dp” € v. p” # s A
set=({p"}) NT7=({s}) thereby violating (M)

Otherwise p’ # s. But then 3p” € °v. p" # ryAp" € 75({p"}) N7 ({r;}) thereby violating
7(M).

Assume p € S. Then there exists ¢ € G N O with p € t° = t*. However (M) =
M € [My)n and 75(M) EAC TS(M') = *t C 7=(M). Since N is contact free, then
(t**t)NT=(M') = @. Therefore from 7=({¢})N7=({p}) = {p} Ap € t* ANq € M’ follows
p € °t. Since p was assumed not be in in M and °t C M it follows that p ¢ °t.

If ¢ € S then ¢ = p thereby contradicting the assumptions. Hence ¢ € S™ and since
g € M" and t° C S we know that ¢ ¢ t° and g was not produced by ¢.

Now there exists the possibility that ¢ was produced by some other concurrent transition.
Assume first that this is not the case and ¢ € M. Then °t C M ANq € M Nq ¢ °t A
p € 7<({q}) N 7=(°t) thereby violating ~v(M).

Assume now that there exists some v € G with ¢ € v°. Since ¢ ¢ S we know that
v € U'. By construction of AI(N) then there exists some ¢’ € v with p € 7<({¢'}).
Then t C M ANg € MAG ¢°tApeT=({d}) NT=(°t) thereby violating v(M).

(iv): Let t; € U’ such that M[{t;})ar,vyM'. Then °t, NS = {s}. Ast,°NS = @ no
element of ¢,° contributes to f(M’) and hence f(M') = f(M) — 1.

39

5 Asymmetric Asynchrony

If °t, C S then 75(M') = 75 (M \°ts)Ut°) = 75 (M \{s})U{s:}) = 7=(M). Otherwise
let p € S such that p; € °t.

Then 75(M') = 75((M \ °t,) Ut,°) = 7= (M \ {s,p:}) U {s,}) = 7(M).

(v): Assume M[G)yM'. Order the elements of G arbitrarily such that G = {t,ts,...,t,}.
We now construct a sequence My, M, ..., M, of markings such that °¢; C M, °t; U°ty C
My,,°ty Uty U---U°t, € M,. To simplify notation, let My := M. To get from
M;_1 to M; with 1 < ¢ < n consider the sequence of places pq,po, ..., p, where every

pj = (pjs1+1)! and p,, = ming. Then M [{ty, }) ar, (5 {tpe 1) az,v) - - [({tpos }) az, () M-
In this fashion we arrive at M,. Then M,[G) a7, M". By construction of AI(N) follows
that M" = M'. U

We get the same set of corollaries as before.
Lemma 5.2 Let N be a net.

AI,(N) is divergence free.

Proof By Lemma 5.1 (i), (ii), (iii) and (iv). O
Lemma 5.3 Let N = (S,0,9, F, M) be a net.

If N is contact free, so is AI,(N).

Proof By Lemma 5.1, (i) and (iii). O

Lemma 5.4 Let N = (5,0,9, F, M) be a net, AI,(N) = (SUS™,0,U’, F', M) and
M, € [My)n, My C S.

* G *

(i) (M, S M) & (M, AL (N) T AL(N) ™ ar, vy Ma)
(ii) (Ml :o>N Mg) = (Ml :U>A19(N) Mg)
Proof Completely parallel to Lemma 3.4 using Lemma 5.1 instead of Lemma 3.1. [J

Lemma 5.5 Let N = (S5,0,9, F, M) be anet and let AI,(N) = (SUS™,0,U’, F', M)
be an asymmetrically asynchronous implementation of N.

Let M C SUST,0 € O* such that My == 4;,(vy M and let Mg := 7 (M).
Then My == 47,(v) Mg and MG C S. MG # Mg A My == 47,y M.

Proof Completely parallel to Lemma 3.5 using Lemma 5.1 instead of Lemma 3.1. [J

40

Proposition 5.1 Let N = (5,0,@, F, M) be a net and let g and h be functions such
that AI,(N) = (SUS™,0,U’, F', My) is an asymmetric asynchronous implementation of
N and h(t,) =t = s = min.

Then .Z(N) C Z(AL(N)).

Proof Completely analogous to Proposition 3.1 using Lemma 5.1 instead of Lemma 3.1.
O

As before, we are interested in the relationship between nets and their possible implemen-
tations. The definition of asymmetric asynchrony however allows different implementa-
tions for the same net. We define a net to be asymmetrically asynchronous if any of the
possible implementations simulates the net sufficiently.

Definition 5.4
The class of asymmetrically asynchronous nets respecting branching time equivalence is
defined as AA(M, B) :={N | dg,h. Al,,(N) ~p N}. Similarly the class of asymmet-
rically asynchronous nets respecting linear time equivalence is defined as AA(M, L) :=

{N | Elg,h A.[g7h(N) ~oPT N}

These classes can be subdivided further by adding constraints to the possible functions A.

Definition 5.5
The class of front asymmetrically asynchronous nets respecting branching time equiv-
alence is defined as AA(V, B) := {N | 3g, h. h(t,) =t = s = min;,, Al ,(N) ~p N}.
The class of front asymmetrically asynchronous nets respecting linear time equivalence
is defined as AA(V, L) := {N | 3g, h. h(t;) =t = s = min}, AL, ,(N) ~cpr N}.

Definition 5.6
The class of tail asymmetrically asynchronous nets respecting branching time equiva-
lence is defined as AA(H, B) := {N | 3g,h. h(t,) =t = s = minj, Al; ,(N) ~p N}.
The class of tail asymmetrically asynchronous nets respecting linear time equivalence
is defined as AA(H, L) := {N | 3g, h. h(t,) =t = s = min), AL, ,(N) ~cpr N}.

We have chosen “V” and “H” from the German “vorne” and “hinten” as “F” for “front”
would collide unnecessarily with the “F” of the failure equivalence.

We kindly remind that most of the results in this section only hold for AA(H, B), as we
restricted ourselves to it.

It would be nice to obtain a semi-structural characterization of AA(H, B) in the spirit of
Theorem 3.1. Unfortunately we did not find exact bounds, but obtained structural upper
and lower bounds for that net class.

41

5 Asymmetric Asynchrony

Definition 5.7
A net N = (S,0,9, F, My) has a left and right reachable M iff 3t,u,v € Odp €
‘tNudg e uncv. t FuAuvAIM, My € [My). *tUu C My A*vUu C My

A net N =(S,0,9, F, My) has a left and right border reachable M iff 3t,u,v € OFp €
‘tNudg e uncv. t ZuAuvAIMy, My € [My). *t C My AN*v C M,

Theorem 5.1
If anet N =(S,0,9,F, M) isin AA(H, B) then N has no left and right reachable
M.

Proof Assume N has a left and right reachable M. Let t,u,v € O and p,q € S such
that p € *tN°uAq € *uN®*vAt # uAu # vAIMy, My € [My). *tUu C My A*vUu C M.

The problematic transition will be u. Either (p,u) >¥ (q,u) or (g,u) > (p,u). Due
to symmetry we can assume the former without loss of generality. We know that there
exists some ¢ € O* such that My ==y M; A *t C M,. By Lemma 2.1 it follows that
V<o, X> e #(N). t¢ X.

By Lemma 5.4 also My == a7, vy M1. Let py, pa, ..., pn € S such that p;_y = (p; + 1)y for
2 <i<nand p, =Dp.

Since *u C M, then there exists some M| with

Mi{up, }) ary vy s} ary vy -+ [,) anyon My
Then p, € M{. By Lemma 5.1 (i) and (iii) also v(M]).

But then by Lemma 5.1 (i) and (iii) there exists an M{ with M| —>, v, M{ A
M == 4,v) NMY(MY). From construction of AI(N) follows p, € M{ = 3s € *u.
(s,u) <y (p,u) As, € M{'. By construction of Al;(N) we know that p € 7(°t). Together
with v (M]) follows °t € M.

But then <o, {t}> € #(AL,(N)). By the earlier observation however <o, {t}> ¢ .Z(N).
Hence N is not in AA(H, B). O

Theorem 5.2
If anet N = (5,0,9, F, M) has no left and right border reachable M then N is in
AA(H, B).

Proof Assume N has no left and right border reachable M.

Then Yu € O. (p,q € *uN (3t € p*. t # u A (M, € [Mo)n. *t C My)) A (Fv € ¢
v #u A (IMy € [My)n. *v € Ms))) = p = q. Hence for every u € O there can only be
one place in *u where conflict could occur.

Now choose g C (S x O) x (S x O) such that for all w € O, min; is that single place.

42

Figure 5.2: N ¢ AA(H, B), N has a left and right border reachable M, N has no left and
right reachable M

Let AL(N) = (SUS™,0,U", F', My).

We prove that .7 (N) = .#(AI,(N)). From Proposition 5.1 we have .#(N) C .#(AI,(N)).
Therefore consider a failure <o, X> € Z(AL(N)). We need to show that <o, X> €
F(N).

There exists some M; C SUST with My == 47, (v) My A My +— AVt € X. M, 3, Then
by Lemma 5.5 My == ar,(v) 75 (M;) and by Lemma 5.4 also My ==y 7 (M).

Now take any t € X. Assume 7(M;) ﬁw. Then °t € M, but *t C 75 (M;).

By construction of 7 then Vs € *t. s € M;V3Iu e O,p e S. s € 7°({u,}) ANu, € M.
Since M, "{’iAIg(N) AM; +— ar,(v) there exists at least one s € *t such that s # M; and
there exist v € O and p € S with s € 7= ({u,}) and u # t.

But then s € *u At € sS* ANt #uNTS(My) € [Mo)y At C 7(M;). Since s € 7{u,} by
construction of AL, (NN) follows that s # miny. This however contradicts our construction

for g given above. Hence 7 (M) —}{&N.

Applying this argument for all ¢t € X yields <o, X > € %#(N) and thereby finally
F(AL(N)) C Z(N). Hence N € AA(H, B). O

Indeed there are some nets in AA(H, B) which have left and right border reachable Ms,

but no left and right reachable M, see Figure 5.2.

As before, the classes defined in this section are related to some known ones.

Definition 5.8 Let N = (S,0,9, F, M) be a net.

(i) N is simple in terms of transitions, N € TSPL, iff Vu,v € O. (*u)*N(*v)* # & =
‘u C vV C *u.
(ii) N is simple, N € SPL,iff Vp,q e S.p*N¢*# @ = |p*|=1V|¢*| = 1.

43

5 Asymmetric Asynchrony

Figure 5.3: N €¢ SPL, N ¢ TSPL, N € AA(H,B), N € ESPL

(iii) N is extended simple, N € ESPL,iff Vp,q € S.p*Nq¢®* # @ = p* Cq*Vq® Cp°.

The class of nets which are simple in terms of transitions and simple nets are incomparable.
Proposition 5.2

TSPL¢ SPLASPL{Z TSPL

Proof The proposition follows from the counterexamples in Figure 4.3 and Figure 5.3.
O

The class of nets which are simple in terms of transitions is strictly smaller than the class
of extended simple nets.

Proposition 5.3

TSPL C ESPL

Proof Let N =(5,0,9,F, M) be a net. We prove that N ¢ ESPL = N ¢ TSPL.

Let N ¢ ESPL. Then there exist p,q € S and t,u,v € O with t € p*N¢®, u € p* \ ¢°
and v € ¢*\ p°.

But then (*u)* N (*v)* D {t}, yet {p} € *u\ *v and {q} € *v \ *u. Hence N ¢ TSPL.

The inequality follows from the counterexample in Figure 5.3. 0

The class of tail asymmetrically asynchronous nets respecting branching time is incom-
parable with the class of nets which are simple in terms of transitions.

Proposition 5.4
AA(H,B) L TSPLATSPL ¢ AA(H, B)

Proof The proposition follows from the counterexamples in Figure 5.3 and Figure 4.3.

The tail asymmetrically asynchronous implementation of the latter will always have a
new failure after the trace . If the left token is taken first either a or b will be disabled,
but no visible action occurred yet. The same holds for the other side. 0

44

Figure 5.4: N € AA(H, B), N ¢ ESPL

The class of simple nets is strictly smaller than the class of extended simple nets.
Proposition 5.5

SPL C ESPL

Proof Let N = (5,0,9,F, M) be a net and N € SPL. If p* N ¢* # & then either
Ip*| =1, p* N ¢®* = p°® and p* C ¢° or vice versa.
The inequality follows from the counterexample in Figure 4.3. 0

The class of simple nets is strictly smaller than the class of tail asymmetrically asyn-
chronous nets respecting branching time equivalence.

Proposition 5.6
SPL C AA(H, B)

Proof We prove that every M violates the constraints of SPL.

Assume N has a left and right reachable M. Let ¢,u,v € O and let p,q € S such that
peE*tN®uNgeun.

Then u € p* N g® and |p*| > 1 A |¢®| > 1. Hence N is not in SPL.
Therefore if N is in SPL it has no M. By Theorem 5.2, N is then in AA(H, B).
The inequality follows from the example in figure Figure 5.4. U

The class of tail asymmetrically asynchronous nets respecting branching time equivalence
is incomparable to the class of extended simple nets.

Proposition 5.7

AA(H,B) ¢ ESPL A ESPL ¢ AA(H, B)

Proof The proposition follows from the counterexamples in Figure 4.3 and Figure 5.4.

The missing tokens in the latter example are intended. As no action is possible there will
not be any additional implementation failures. 0

45

5 Asymmetric Asynchrony

Figure 5.5: N ¢ AA(V,B), N ¢ AA(V,L), N € FC, N € AA(H, B)

The class of tail asymmetrically asynchronous nets respecting branching time equivalence
is strictly smaller than the class of asymmetrically asynchronous nets. While the inclusion
is obviously trivial, the inequality is more interesting.

Proposition 5.8

AA(H, B) € AA(M, B)

Proof Follows from the definitions and the counterexample in Figure 4.3.

Every tail asymmetrically asynchronous implementation of the net will have one additional
failure, either <e, {a}> or <e, {b}>. O

Typical nets which are in AA(M, B) but not in AA(H, B) are those with redundant places
where it is important to make the choice on the first place taken and do it using a visible
transition, lest branching time is violated. However there are less sinister uses of the
freedom given in the function h, see Figure 5.6 for an example.

The following result is included merely for sake of completeness, as it is both trivial and
rather uninteresting, since the class of front asymmetrically asynchronous nets respect-
ing branching time seems far too small. At least, it’s strictly included in the class of
asymmetrically asynchronous nets respecting branching time.

Proposition 5.9

AA(V, B) € AA(M, B)

Proof Follows from the definitions and the counterexample in Figure 5.5. In the exam-
ple, any front asymmetrically asynchronous implementation will have an additional trace,
either za or ya. O

The same relation also holds within linear time semantics.

46

Figure 5.6: N € AA(M,L), N € AA(M,B), N ¢ AA(H, L)

Proposition 5.10

AA(V,L) € AA(M, L)
Proof Follows directly from the definitions and the counterexample in Figure 5.5. [

However some structures are implementable within front asymmetrically asynchronous
nets respecting branching time while not in the tail asymmetrically asynchronous variant.

Proposition 5.11

AA(H,B) ¢ AA(V, B) A AA(V, B) ¢ AA(H, B)

Proof The proposition follows from the counterexamples in Figure 4.3 and Figure 5.5.
U

The classes of tail asymmetrically asynchronous nets is strictly smaller than the class of
asymmetrically asynchronous nets. This result came quite as a surprise to us and relies
heavily upon the fact that we have chosen a behavioural equivalence instead of a notion
of simulation which also considers markings.

Proposition 5.12

AA(H, L) € AA(M, L)

Proof AA(H,L)C AA(M, L) follows directly from the definitions.

47

5 Asymmetric Asynchrony

The inequality follows from the example in figure Figure 5.6. The dashed parts in the
diagram are not necessary for the formal proof, but exist only to highlight the fact that
there are such nets where b can be enabled. We prove that no tail asymmetrically asyn-
chronous implementation can be completed pomset trace equivalent to this net (without
dashed parts).

The original net has the completed traces zc, and xa. After z, a token resides on r and
b must not take that token away, since ¢ must stay enabled until fired. Therefore any
implementation of b must first attempt to acquire a token from ¢. Furthermore after z a
token resides on ¢ but b must not fire. Since the token from ¢ must be taken before the
one from r, the transition doing so must be invisible. However the trace must not be
maximal but extendible to xa. Since the token on ¢ can be taken away at any time by
the invisible transition which is part of the implementation of b, the execution of ¢ must
not depend on the existence of a token on ¢. Hence a must first take the token from p
and do so using the visible transition. O

The implementation outlined in the proof of Proposition 5.12 will also work with the
dashed parts included, making the example slightly less contrived. Nonetheless, the cor-
rectness of the implementation depends crucially on the fact that no further actions get
executed after a, as the implementation of @ is not guaranteed to run to completion and
the place s might not be marked after the trace xa.

This result can be interpreted in two ways. On the one hand, our behavioural approach
seems to produce odd results, on the other hand, it identifies special cases which are still
implementable by our methods, even though the general structure of them is not.

Those cases which are only implementable by in AA(M, L) are rare however, and we con-
jecture that the class of tail asymmetrically asynchronous nets is already strictly greater
than the class of extended simple nets.

Conjecture 5.1

ESPL C AA(H, L)

Proof (Sketch) Let N = (S,0, 9, F, My) be a net and N € ESPL.
We choose ¢ such that Vt € O,p,q € *t. p* Cq¢* = p SZ q.

Let AI,(N) = (SUS7,0,U’, F’, My). One needs to show that MVP(N) = MVP(AIL,(N)).
U

We also conjecture that the class of extended simple nets is strictly smaller than the
class of asymmetrically asynchronous nets respecting branching time. First we show a
nice property of extended simple nets which can then be used to construct the correct
implementation.

48

Figure 5.7: N € AA(H, L), N ¢ AA(M, B)

Lemma 5.6 Let N = (S,0,9, F, My) be a net with N € ESPL. Let # C O x O be
the relation defined as t#u < *t N °u # .

Let t € O. Let X :={u | t#u}. If | X|>1then ds € S. X C s°.

Proof By induction over the size of a subset Y of X. Begin with Y := {t, u} with t#u.
By definition of # there exists an s € *tN°*u C S.

Now assume Y C X A |Y| > 1 and there exists an s € S with Y C s*. Take au € Y
and a v € X \ Y with v#u. Then there exists a p € *u N *v by definition of #. But then
s* N p®* O {u}. Hence either s* C p*® or p* C s* by the condition of ESPL.

In the first case Y U {v} C p°, in the latter case Y U {v} C s°*. This can be continued
until Y = X. t

Conjecture 5.2

ESPL C AA(M, B)

Proof (Sketch) Let N = (S,0,@, F, My) be a net and N € ESPL.

From Lemma 5.6 we get a single dominating preplace for each set of conflicting transitions.
We then define g such that minz is that singe place.

We would need to show that MVP(N) = MVP(AL,(N)). O

We also conjecture that the class of asymmetrically asynchronous nets respecting branch-
ing time is strictly smaller than the class of asymmetrically asynchronous nets respecting
linear time.

49

5 Asymmetric Asynchrony

Conjecture 5.3

AA(M, B) C AA(M, L)

Similarly we conjecture that the class of tail asymmetrically asynchronous nets respecting
branching time is strictly smaller than the class of tail asymmetrically asynchronous nets
respecting linear time.

Conjecture 5.4

AA(H, B) C AA(H, L)

The class of tail asymmetric asynchronous nets respecting linear equivalence is incompa-
rable to the class of asymmetric asynchronous nets respecting branching time equivalence.

Proposition 5.13

AA(H,L) & AA(M,B) N AA(M,B) ¢ AA(H, L)
Proof By the counterexamples in Figure 5.6 and Figure 5.7. 0

The class of symmetrically asynchronous nets respecting branching time equivalence is
strictly smaller than the class of asymmetrically asynchronous nets respecting branching
time equivalence.

Proposition 5.14

SA(B) C AA(B)

Proof A net which has no partially reachable N also has no left or right border reachable
M.

The inequality follows from the example in Figure 4.1. 0

Similarly to what we did in Section 4, we now try to translate Figure 5.8 into an intuitive
description.

The classes AA(V, B) and AA(V, L) on the right side are as weakly connected as they are
since the associated implementations cannot test whether all pre-places of a transition
are actually marked, thereby producing additional traces which were not possible in the
original net. The resulting net classes are therefore quite small and we didn’t think it
very important to map their relation to the other classes.

20

TSPL — # — SPL L)

AA(V,B) AA(V,L
| \/ |
N . %/
ESPL —# — AA(HB))
P .
| \\\ // |
7 f)/

N 23 N
! 2 L |

e ~

AA(L) -#- AA(MB)

\o“ (:wf
N

AA(M,L)

Figure 5.8: Overview of the asymmetrically asynchronous net classes

The inequality between AA(H, B) and AA(M, B) stems from the ability of AA(M, B) to
delay removal of tokens until the visible transition has fired. This usually only works when
said tokens are guaranteed to stay where they are until the transition fired, a situation
commonly encountered when multiple preplaces are common to two transitions. Such
nets lie not in AA(H, B) since as soon as the first token on a shared preplace is removed
using a silent transition branching time equivalences are violated.

No such problem occurs in linear time however, but unfortunately the power of choosing
freely where to insert the visible transition can be used to implement corner cases as the
one in Figure 5.6. We don’t think there is any meaningful difference between AA(M, L)
and AA(H, L) however.

The differences between AA(M, L) and AA(M, B) and between AA(H, L) and AA(H, B)
are caused by the possibility of linear time respecting implementations to deadlock tem-
porarily, i.e. a token seems stuck somewhere in the implementation of an transition, but
another part of the net continues and finally resolves the deadlock. If the token which
seems stuck could have been used by another transition in the original net, such a tem-
porary deadlock violates branching time equivalences, but not linear time equivalences.

Similar to the difference between F'C' and EFC there exists a difference between ESPL
and SPL which originates from the fact that £.SPL allows small transformations to a net
before testing whether it lies in SPL. This time however our semantically asynchronous
classes (aside from AA(H, B)) are large enough to contain the untransformed net structure

directly, hence the inclusion of ESPL in AA(H, L) and AA(M, B).

ol

6 Conclusions and Related Work

In this paper we have shown how different grades of asynchrony can be modelled in Petri
nets. We defined three substantially different families of semantically characterized net
classes. In the first family of classes (FSA) it is assumed that removal of tokens happens
spontaneously but takes some time to complete. In the second family of classes (SA),
these assumptions are held up in principle but transitions which have only one preplace
can remove tokens atomically from that single preplace. Finally in the third family of
classes (AA) the transitions can control the removal of tokens in so far as tokens are only
removed in a static sequence. We have proven a chain of true inclusions between those
three families.

Furthermore we have shown which of the known Petri net classes can be implemented
using which grade of asynchrony. Specifically we found that free choice nets correspond
to the second family of net classes and asymmetric choice nets correspond to the third
family.

Similar considerations have already be done in the context of process algebras, mainly
m-calculus, locally synchronous systems and hardware implementations.

In [11]| Leslie Lamport outlines the basic problem of missing absolute time in a system of
communicating processes. He then derives a total ordering of system-wide events which
can then be used to solve synchronization problems. He does not detail the implementa-
tion of the processes involved in his systems and local synchrony seems to be implied.

In [12] Leslie Lamport considers arbitration in hardware and outlines various arbitration-
free “wait /signal” registers. He notes that nondeterminism is thought to require arbitra-
tion but no proof is known. He concludes that only marked graphs can be implemented
using these registers. Lamport then introduces “Or-Waiting”, i.e. waiting for any of two
signals, but has no model available to characterize the resulting processes.

The used communication primitives bear a striking similarity to our symmetrically asyn-
chronous nets. While the Petri nets seem to imply nondeterministic choice in the case of
forward branching places, this need not be the case. Since the choice in which direction
the token moves is made locally it could as well be done deterministically, for example
alternating.

In [16] Potop-Butucaru, Caillaud and Benveniste introduce a notion of “weak endochrony”
which characterizes locally synchronous components which can be combined without com-
plications into a globally asynchronous system. They then continue to show that weak
endochrony is preserved by composition, which they hope will make synthesis of weakly
endochronous systems easier.

52

In [8] Frank S. de Boer and Catuscia Palamidessi consider various dialects of CSP with dif-
fering degrees of asynchrony. In particular, they consider CSP without output guards and
CSP without any communication based guards. Furthermore they also consider explicitly
asynchronous variants of CSP where output actions cannot block, i.e. asynchronous send-
ing is assumed. Our results are related as they provide further detail between CSP, and
CSP;. Interestingly our model seems to have no distinction parallel to the ACSP/CSP
boundary.

The one-to-one communication assumption made in [8] when embedding CSP; into ACSP;
might be related to the boundary between SA and A A as multiple input-guarded receivers
together with one sender can still form an M.

In [15] Catuscia Palamidessi shows that some kinds of synchronous communication are
impossible in the asynchronous w-calculus, if certain constraints are placed upon the
encodings available. In particular she wants encodings to be homomorphic wrt. parallel
composition. She then continues to show that symmetric electoral systems cannot be
implemented without mixed choice, i.e. the ability to wait both for input and output
possibilities at the same time.

In [9] Dianele Gorla investigates different sublanguages of the asynchronous m-calculus
which are obtained by allowing different features of communication, namely arity, pattern-
matching and fifo-channels. He then proceeds by detailing which encodings between these
languages are possible and which are not. He also enforces encodings to be homomorphic
wrt. parallel composition, thereby excluding asymmetric encodings.

In [14] Uwe Nestmann gives encodings between various forms of the asynchronous 7-
calculus. Due to the inherent asymmetry of input and output and because of the use
of atomic transmission of values, the m-calculus setting is non-trivially different from out
Petri Net based approach. Since our model has static connectivity, it is especially useful
for low-level hardware designs.

In [13] Mark Moir describes a communication scheme for a set of processes on a multipro-
cessor system which want to perform transactional changes to different blocks of shared
memory. By clever intermingling of rather low-level lock and higher level transaction
management, the proposed scheme enables truly concurrent execution of processes which
concurrently read a shared block while ensuring that no two transactions which modify
the same block execute in parallel.

In [17] Wolfang Reisig introduces a class of systems which communicate using buffers and
where the relative speeds of different components are guaranteed to be irrelevant. The
resulting nets are simple nets. He then proceeds introducing a decision procedure for the
problem whether a marking exists which makes the complete system live.

The structural net classes we compare our constructions to where all taken from [4], where
Eike Best and M.W. Shields introduce various transformations between free choice nets,
simple nets and extended variants thereof. They use “essential equivalence” to compare
the behaviour of different nets, which they only give informally. Moreover this equivalence

23

6 Conclusions and Related Work

is insensitive to divergence, which is also relied upon in their transformations. They then
continue to show some conditions under which liveness can be guaranteed for some of the
classes.

In [1], Wil van der Aalst, Ekkart Kindler and Jorg Desel introduce two extensions to
extended simple nets, by allowing test arcs to violate the ordering of places. This however
assumes a kind of “atomicity” of test arcs, which we did not allow in this paper. In
particular we don’t implicitly assume that a transition will not change the state of a place
it is connected to by test arcs, since in case of deadlock, the temporary removal of a token
from such a place might not be temporary indeed.

In [10], Richard P. Hopkins introduces the concept of “distributable” Petri Nets, where
each transitions and it’s preplaces must reside on a single conceptual machine, while
the post-places may reside on another one. He then shows which net structures are
distributable if additional 7 transitions are allowed to be inserted before the visible tran-
sitions. The resulting net structures can be understood to be the coarse limit of what
we describe in this paper. Our paper fills in much detail which between his classes and
free choice nets. Consequently, his paper gives multiple theorem for non-distributability
whereas we give the positive results for smaller classes.

He uses interleaving semantics throughout his paper, and as he himself notes, the dis-
tributed implementations of some of the example nets behave differently in true concur-
rency semantics than the original nets, namely they add concurrency in some cases where
two transitions share the same preplace which is also a post-place of both by duplicating
said place.

Another relevant difference exists between his definitions and ours, namely his classifica-
tions are all structural, in the sense that distributability is not a dependent on the initial
marking. While he gives the (obvious) extension of distributability which depends on the
initial marking, he unfortunately does not give any theorems about it.

In [5] Luc Bougé considers the problem of implementing symmetric leader election in the
sublanguages of CSP obtained by either allowing all guards, only input guards or only
unguarded choice. He finds that the possibility of implementing it depends heavily on
the structure of the communication graphs, while “truly” symmetric schemes are only
possible in CSP with input and output guards. These results should be transferable into
our framework by relating the class SA to CSP without guarded choice, and the class AA
with CSP with only input guarded choice.

Similarly in [6] Luc Bougé improves upon a distributed snapshot algorithm by Chandy and
Lamport, adding the possibility to take repeated snapshots and still using only bounded
storage. His algorithm ensures non-interference of different snapshot rounds by means of
synchronous communication. Indeed his implementation uses input and output guards
in the same choice, leading to structures outside of AA(H, L), and is therefore not easily
extendible to asynchronous systems.

However there is still much room for research in the topic of asynchronous systems. We

54

conjecture that, even for ready equivalence, it will not be possible to find an equivalent
encoding of general synchronous systems into asynchrony, even if symmetry and homo-
morphism wrt. parallel composition are not required properties of the encoding (work in
progress).

However, these restriction seems not to occur in linear time semantics, and an encoding
of general Petri nets into some class of asynchronous nets should be possible, if the
equivalence is sufficiently coarse. The necessary class of asynchronous nets seems to
be still a bit more synchronous than the three classes introduced in this paper (work in
progress).

Another interesting problem is to create the connection from our Petri net based model
to real hardware. Most probably, the different grades of asynchrony will result in different
performance characteristics of their hardware implementations. It might be interesting to
create hardware implementations of the various transition types we introduced and bench-
mark those, but even more interesting it seems would be to apply the knowledge obtained
through our models and try to make new more asynchronous chip designs, thereby im-
proving performance.

Furthermore, standard distributed algorithms could be classified by their implementability
within the various asynchronous models, thereby creating some common ground between
the various concepts of asynchrony occurring in different papers.

95

Bibliography

[1]
2]

3]

[4]

[5]

6]

17l

8]

19]

[10]

[11]

[12]

26

W.M.P. van der Aalst, E. Kindler, and J. Desel. Beyond Asymmetric Choice: A note
on some extensions. Petri Net Newsletter, 55:3—13, 1998. 54

Albert Benveniste, Benoit Caillaud, and Paul Le Guernic. From synchrony to asyn-
chrony. In International Conference on Concurrency Theory, pages 162-177, 1999.
1

E. Best. Structure theory of Petri nets: The free choice hiatus, pages 168-206.
Springer-Verlag, Berlin, 1987. 27, 28, 31

Eike Best and M. W. Shields. Some equivalence results for free choice nets and simple
nets and on the periodicity of live free choice nets. In CAAP ’83: Proceedings of the
8th Collogquium on Trees in Algebra and Programming, pages 141-154, London, UK,
1983. Springer-Verlag. 53

L. Bougé. On the existence of symmetric algorithms to find leaders in networks of
communicating sequential processes. Acta Inf., 25(2):179-201, 1988. 1, 54

Luc Bougé. Repeated snapshots in distributed systems with synchronous communi-
cations and their implementation in csp. Theor. Comput. Sci., 49:145-169, 1987. 1,
54

G. N. Buckley and Abraham Silberschatz. An effective implementation for the gen-
eralized input-output construct of csp. ACM Trans. Program. Lang. Syst., 5(2):223~
235, 1983. 1

F. de Boer and C. Palamidessi. Embedding as a tool for language comparison: On
the csp hierarchy, 1991. 53

D. Gorla. On the relative expressive power of asynchronous communication primi-
tives. In L. Aceto and A. Ingolfsdottir, editors, Proc. of 9th Intern. Conf. on Founda-
tions of Software Science and Computation Structures (FoSSaCS’06), volume 3921
of LNCS, pages 47-62. Springer, 2006. 1, 53

Richard P. Hopkins. Distributable nets. In Papers from the 11th International Con-
ference on Applications and Theory of Petri Net, pages 161-187, London, UK, 1991.
Springer-Verlag. 1, 34, 54

L. Lamport. Time, clocks, and the ordering of events in a distributed system, 1978.
52

Leslie Lamport. Arbitration-free synchronization. Distrib. Comput., 16(2-3):219-237,
2003. 1, 52

Bibliography

[13] Mark Moir. Transparent support for wait-free transactions. In Workshop on Dis-
tributed Algorithms, pages 305-319, 1997. 53

[14] Uwe Nestmann. What is a ‘good’ encoding of guarded choice? Journal of Information
and Computation, 156:287-319, 2000. 53

[15] Catuscia Palamidessi. Comparing the expressive power of the synchronous and the
asynchronous pi-calculus. In Symposium on Principles of Programming Languages,
pages 256265, 1997. 1, 53

[16] Dumitru Potop-Butucaru, Benoit Caillaud, and Albert Benveniste. Concurrency in
synchronous systems. 1, 52

[17] Wolfgang Reisig. Deterministic buffer synchronization of sequential processes. Acta
Informatica, 18:115-134, 1982. 53

[18] Wolfgang Reisig. Partial order semantics versus interleaving semantics for csp-like
languages and its impact on fairness. In Proceedings of the 11th Colloquium on Au-
tomata, Languages and Programming, pages 403—413, London, UK, 1984. Springer-
Verlag. 6

[19] R. van Glabbeek. The linear time — branching time spectrum i: The semantics of
concrete, sequential processes. 2

[20] Rob J. van Glabbeek. The linear time - branching time spectrum II. In International
Conference on Concurrency Theory, pages 66-81, 1993. 2

[21] Rob J. van Glabbeek and Ursula Goltz. Refinement of actions and equivalence notions
for concurrent systems. Acta Informatica, 37(4/5):229-327, 2001. 2

57

	Titel
	Abstract
	Contents
	List of Figures
	List of Abbreviations
	1 Introduction
	2 Basic Notions
	3 Fully Symmetric Asynchrony
	4 Symmetric Asynchrony
	5 Asymmetric Asynchrony
	6 Conclusions and Related Work
	Bibliography

