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1 Introdu
tionThe obje
tive of this paper is to des
ribe the distin
tion between syn
hrony and asyn-
hrony in distributed systems in novel and detailed ways.Naively, syn
hrony between two events in a distributed system means that both eventshappen �at the same time�. In real-world systems however this 
on
ept is ill-de�ned as thespeed of light introdu
es some inherent amount of asyn
hrony everywhere in the systemand whether two events happen at the same time depends on the observer. Nonethe-less two events 
an be 
onsidered syn
hronous when �nothing of importan
e 
ould havehappened between them.�Consider for example two 
on
urrently running pro
esses A and B whi
h wish to ex
hangeinformation by sending some kind of message. The event of A sending the message andthe event of B re
eiving it 
an now either be syn
hronous or asyn
hronous. If the twoevents happen syn
hronously, no further 
omputation 
an happen anywhere in the systemwhile the message travels, whi
h in parti
ular means that B is indeed ready to re
eive themessage when A sends it. If however the two events are asyn
hronous, B might de
ide,after A sent the message, not to 
ommuni
ate and instead do something else. Thus it isnot guaranteed that B will ever re
eive the message as intended by A.In pra
ti
e, to get a system in whi
h syn
hrony between events is meaningful 
lo
ks areused, as seen in many 
omputer 
hips. However the larger the part of the system, whi
h issyn
hronized using the same 
lo
k, the lower the performan
e will be. Thus splitting thesystem in many asyn
hronous parts will improve performan
e, sometimes 
onsiderably.To help in this splitting, we want to answer the question whi
h events in a system areasyn
hronous, that is whether they o

ur syn
hronously or not with other events is irrel-evant.Mu
h has already been written about related questions during the last de
ades. Usingvariations of CSP there are [5℄, [6℄ and [7℄, Petri nets have been 
overed in [10℄, lo
allysyn
hronous systems in general by [2℄ and re
ently asyn
hronous π-
al
ulus has beenemployed by [9℄, [16℄ and [15℄.Impossibility results for en
oding syn
hrony in asyn
hronous systems have been obtainedin some of these papers while other ones a
hieved 
on
rete en
odings for the same problemusing other 
onstraints.More hardware oriented results exist as well, as the problem of how to implement aspe
i�ed behaviour using the most performant 
ommuni
ation possible frequently o

ursduring 
hip design. See [12℄ for some examples. 1



1 Introdu
tion
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a bFigure 1.1: Transformation to the symmetri
ally asyn
hronous implementationAn overview and a detailed 
omparison between our results and the literature is made inSe
tion 6.To study the problem in a basi
 model independent from spe
i�
 language 
onstru
ts, wehave 
hosen Petri nets as our model of 
omputation.In Petri nets, only very low-level primitives are available and the di�eren
es betweensyn
hrony and asyn
hrony are hen
e more obvious. As do many other formal models,Petri nets have, despite their rather small set of primitives, syn
hrony already built in:Whenever a transition �res, the tokens of all prepla
es are removed atomi
ally, and noother transition 
an use them. This be
omes espe
ially signi�
ant in the 
ase of 
on�i
t,where multiple transitions share the same prepla
e. To disallow this form of syn
hronyand get an �asyn
hronous� Petri net, the reality of physi
al pro
esses 
an be mimi
ked inthe form of silent transitions whi
h pretend that removing tokens is not an instantaneousa
tion. Thus other events 
an o

ur even while one transition is in the pro
ess of �ring.We 
all the net with the newly introdu
ed transitions an �implementation�, as it repre-sents a possible real-world implementation of the original net. In this paper we introdu
ethree di�erent possible asyn
hronous implementations, namely the �fully symmetri
allyasyn
hronous�, the �symmetri
ally asyn
hronous� and the �asymmetri
ally asyn
hronous�implementation, whi
h di�er in how mu
h additional stru
ture is allowed between theinvisible transitions to manage the removal of tokens. These di�erent implementationsrepresent di�erent grades of asyn
hrony, thereby enabling us to des
ribe whi
h 
ommuni-
ation stru
tures 
an still be implemented at whi
h grade of asyn
hrony.An example of su
h an asyn
hronous implementation of a net 
an be seen in Figure 1.1.It 
an be seen as a representation of two pro
esses (one on ea
h side of the net) whi
h
ommuni
ate syn
hronously by exe
uting the transition b together. Note that after in theimplementation the sender 
an no longer be sure whether the re
eiver will ever be willingto pro
ess the message, whi
h was not the 
ase before.The new system 
an still perform the same set of a
tions, but 
an also deadlo
k. These twobehaviours seem intuitively di�erent. To formalize this intuition of di�eren
e, equivalen
erelations are used, whi
h de�ne when exa
tly two systems are �the same�.A quite 
omprehensive overview over existing equivalen
e relations for rea
tive systemsis given by [19℄, [20℄ and [21℄. Su
h equivalen
e relations 
an be 
lassi�ed along di�erent2



dimensions, two of the most prominent being the sensitivity to the de
ision stru
ture be-tween alternative behaviours of a system and the sensitivity to 
ausality between di�erenta
tions. Along the �rst dimension, equivalen
es whi
h essentially disregard the de
isionstru
ture are 
alled linear time equivalen
es whereas ones whi
h respe
t it (in more orless detail) are 
alled bran
hing time equivalen
es.Returning to our original problem, we 
an now 
hara
terise 
lasses of Petri nets by 
on-sidering whether they are equivalent to their implementation. This 
hara
terisation hastwo parameters we 
an 
hoose: By whi
h equivalen
e relation to 
ompare the behaviourand how exa
tly to perform the implementation, i.e. where to insert new transitions andwhi
h stru
tures to allow between the them. Choosing di�erent sets of parameters willnot only give new insight into the di�eren
e between syn
hrony and asyn
hrony but willalso produ
e a 
lassi�
ation of equivalen
e relations with respe
t to their ability to dis
ernthe two.We will start our sear
h for useful equivalen
e relations at the 
oarsest end of the spe
trum,namely tra
e equivalen
e, 
omparing just the sequen
es of a
tions performed. It will turnout however, that neither tra
e equivalen
e nor 
ompleted tra
e equivalen
e is suited toour needs.We �nally �nd a useful �linear time� equivalen
e by 
omparing the pomsets of maximalpro
esses of a net. This equivalen
e respe
ts 
ausality and parallelism and enables us todete
t lo
al deadlo
ks in spite of in�nite 
on
urrent a
tivity. Sin
e parallelism is respe
tedwe 
an argue that the implementation will be �as e�
ient� as the original net.For bran
hing time semanti
s, we use failures equivalen
e whi
h is one of the most usedequivalen
es.It turns out that our semanti
ally 
hara
terised net 
lasses, indu
ed by the various im-plementations and equivalen
e relations, are related to well known stru
tural net 
lasses.Symmetri
ally asyn
hronous nets relate to free-
hoi
e and extended free 
hoi
e nets, whileasymmetri
ally asyn
hronous nets relate to simple nets. The exa
t relations naturally de-pend on the 
hosen equivalen
e relation. This result implies that free 
hoi
e and simplenets 
an be easily distributed. Our 
lasses are larger than the stru
tural ones however, asdistributability depends on 
on
rete behaviour and not stati
 stru
ture.In Se
tion 2, we pro
eed by introdu
ing some basi
 notions ne
essary for the subsequentexamination of net 
lasses. Afterwards Se
tion 3 des
ribes the e�e
ts of the fully sym-metri
ally asyn
hronous implementation, �rst by proving some basi
 lemmas about theimplementations behaviour then by giving a more stru
tural 
hara
terisation of one ofthe resulting net 
lasses. Se
tion 4 then repeats those steps for the symmetri
ally asyn-
hronous implementation. Additionally relations to various stru
tural net 
lasses aregiven. In Se
tion 5 those two steps are also done for the asymmetri
ally asyn
hronousimplementation. Finally an analysis of how the results of related work are 
onne
ted withours is given in the 
on
lusions in Se
tion 6.
3



2 Basi
 NotionsWe 
onsider here 1-safe net systems, i.e. pla
es never 
arry more than one token and atransition 
an �re even if pre- and postset interse
t. To represent unobservable behaviour,whi
h we use to model asyn
hrony, the set of transitions is partitioned into observableand unobservable ones.De�nition 2.1A net with silent transitions is de�ned as N = (S, O, U, F, M0) where� S is a set (of pla
es),� O is a set (of observable transitions),� U is a set (of unobservable transitions),� F ⊆ (S × T ∪ T × S) (the �ow relation) with T = O ∪ U (transitions) and� M0 ⊆ S (the initial marking).In this paper we only 
onsider �nite nets, i.e. S, O, U are all �nite.We denote the preset and postset of a net element x by •x := {y | (y, x) ∈ F} andby x• := {y | (x, y) ∈ F} respe
tively. Where ne
essary we extend fun
tions to setselement-wise. Furthermore the transitive 
losure of the �ow relation is denoted F+.The semanti
s of su
h a Petri net 
an be des
ribed using the �token game�: Wheneverall prepla
es of a transition hold a token (i.e. •x ⊆ M) that transition 
an �re, therebyremoving all those tokens and generating new ones on its post-pla
es.De�nition 2.2 Let N = (S, O, U, F, M0) be a net. Let M1, M2 ⊆ S.
G ⊆ (O ∪ U), G 6= ∅, is 
alled a step from M1 to M2, M1[G〉NM2, i�� all transitions 
ontained in G are enabled, i.e.

∀t ∈ G. •t ⊆ M1 ∧ (M1 \
•t) ∩ t• = ∅ ,� all transitions of G are independent, that is not 
on�i
ting:

∀t, u ∈ G, t 6= u. •t ∩ •u = ∅ ∧ t• ∩ u• = ∅ ,� in M2 all tokens have been removed from the pre
onditions and new tokens havebeen inserted at the post
onditions:
M2 =

(

M1 \
⋃

t∈G

•t

)

∪
⋃

t∈G

t• .
4



We omit the subs
ript N if 
lear from 
ontext. To make proofs about 
onta
t freenesseasier in notation, we introdu
e a notation for a possibly not 
onta
t-free step andwrite M1[G)M2 i� ∀t ∈ G. •t ⊆ M1 and the se
ond and third 
onditions from abovehold.To simplify statements about possible behaviours of a net, we introdu
e some abbrevia-tions.De�nition 2.3For a net N = (S, O, U, F, M0), we de�ne three relations:� −→N ⊆ P(S) ×P(O) × P(S) as M1
G

−→N M2 ⇔ G ⊆ O ∧ M1[G〉NM2� τ
−→N ⊆ P(S) ×P(S) as M1

τ
−→N M2 ⇔ ∃t ∈ U. M1[{t}〉NM2� =⇒N ⊆ P(S) × O∗ × P(S) as M1

σ
=⇒N M2 ⇔ ∃n ≥ 0. σ = t1t2 · · · tn ⊆ O∗ ∧

M1
τ

−→
∗

N

{t1}
−→N

τ
−→

∗

N

{t2}
−→N

τ
−→

∗

N · · ·
τ

−→
∗

N

{tn}
−→N

τ
−→

∗

N M2We write M1
G

−→ for ∃M2. M1
G

−→ M2, M1 X
G

−→ for ∄M2. M1
G

−→ M2 and similar forthe other two relations. We write M1 X−→ for M1 X
τ

−→ ∧∀G ⊆ O. M1 X
G

−→.A marking M1 is said to be rea
hable i� there exists a σ ∈ O∗ su
h that M0
σ

=⇒ M1.The set of all rea
hable markings is denoted by [M0〉.This paper only 
onsiders 
onta
t-free nets where in every rea
hable marking M1 ∈ [M0〉for all t ∈ O ∪ U with •t ⊆ M1

(M1 \
•t) ∩ t• = ∅ .De�nition 2.4A tuple N = (S, O, U, F, M0) is an o

urren
e net i�� all 
onditions of De�nition 2.1 hold,� ∀x, y ∈ S ∪ O ∪ U. (x, y) ∈ F+ ⇒ (y, x) /∈ F+,� ∀s ∈ S. |•s| ≤ 1 ∧ |s•| ≤ 1 and� M0 = {s | s ∈ S, •s = ∅}.A pla
e s ∈ S in an o

urren
e net is said to be maximal i� s• = ∅. We write N◦ forthe set of all maximal pla
es of an o

urren
e net N . Similarly we write ◦N for the setof minimal pla
es de�ned as ◦N := {s | s ∈ S, •s = ∅}. Note that we do not enfor
e�niteness for o

urren
e nets.De�nition 2.5A sli
e of a net N = (S, O, U, F, M0) is a maximal set C ⊆ S su
h that

∀x, y ∈ C. (x, y) /∈ F+.De�nition 2.6 Let N = (S, O, U, F, M0) be a net and let N ′ = (S ′, O′, U ′, F ′, M ′
0) bean o

urren
e net.A mapping f : (S ′ ∪ O′ ∪ U ′) → (S ∪ O ∪ U) is a pro
ess of N i� 5



2 Basi
 Notions
N :

a b c

SI(N) :

τ τ

a b cFigure 2.1: A net without 
ompleted tra
es� f(S ′) ⊆ S ∧ f(O′) ⊆ O ∧ f(U ′) ⊆ U ,� f(M ′
0) = M0,� for every sli
e C of N ′, ∀x, y ∈ C. f(x) = f(y) ⇒ x = y (f is inje
tive over allsli
es) and� ∀t′ ∈ O′ ∪ U ′. f(•t′) = •f(t′) ∧ f(t′•) = f(t′)•.De�nition 2.7A pro
ess f from an o

urren
e net N ′ to a net N is said to bemaximal i� f(N ′◦) X−→N .The set of all maximal pro
esses of a net N is denoted by MP (N).To des
ribe whi
h nets are �asyn
hronous�, we wish to 
ompare their behaviour to thatof their implementations using equivalen
e relations. The simplest useful equivalen
eavailable is tra
e equivalen
e. This equivalen
e de
lares two nets N = (S, O, U, F, M0) and

N ′ = (S ′, O′, U ′, F ′, M ′
0) to be equivalent i� every tra
e of either net is always also possiblein the other, i.e. ∀σ. (M0

σ
=⇒N) ⇔ (M ′

0
σ

=⇒N ′). However we will �nd (in Lemma 4.4)that tra
e equivalen
e will always treat original and implementation as equivalent and wewould thus be unable to dis
ern syn
hronous and asyn
hronous nets.The di�eren
e in behaviour between a net and its implementation will always be in the ex-isten
e of deadlo
ks as in the example of Figure 1.1. To dete
t deadlo
ks, 
ompleted tra
eequivalen
e is usually used. This equivalen
e additionally 
ompares whether a tra
e was
omplete, i.e. whether no further transition 
ould �re after the net produ
ed the tra
e �or in formal term, whether additionally ∀σ. (M0
σ

=⇒N M1∧M1 X
τ

−→N ) ⇔ (M ′
0

σ
=⇒N ′ M1∧

M1 X
τ

−→N ′). However the example in Figure 2.1 should intuitively not be asyn
hronousas one 
omponent 
ould deadlo
k in the implementation whi
h nonetheless has the same
ompleted tra
es as the original net, i.e. none. So 
ompleted tra
e equivalen
e won'tprovide the distin
tion we want either. We need some notion of justi
e, whi
h for
estransitions to �re ultimately if 
ontinuously enabled. As noted in [18℄, justi
e in lineartime is best des
ribed using 
ausality respe
ting equivalen
es.Thus we will 
onsider two nets equivalent if the sets of visible pomsets obtained fromtheir respe
tive maximal pro
esses are equal. The resulting equivalen
e relation respe
ts
ausality and parallelism and yields a just semanti
s.6



De�nition 2.8A labelled partial order is a stru
ture (V, T,≤, l) where� V is a set (of verti
es),� T is a set (of labels),� ≤ ⊆ V × V is a partial order relation and� l : V → T (the labelling fun
tion).Two labelled partial orders o = (V, T,≤, l) and o′ = (V ′, T,≤′, l′) are isomorphi
,
o ≈ o′, i� there exist a bije
tion ϕ : V → V ′ su
h that� ∀v ∈ V. l(v) = l′(ϕ(v)) and� ∀u, v ∈ V. u ≤ v ⇔ ϕ(u) ≤′ ϕ(v).De�nition 2.9 Let o = (V, T,≤, l) be a partial order.The pomset of o is its isomorphism 
lass [o] := {o′ | o ≈ o′}.By hiding the unobservable transitions of a pro
ess, we gain a pomset whi
h des
ribes
ausality relations of all parti
ipating visible transitions.De�nition 2.10 Let f : (S ′, O′, U ′, F ′, M ′

0) → (S, O, U, F, M0) be a pro
ess.The visible pomset of f is the pomset V P (f) := [(O′, O, F ′∗, f ∩ (O′ × O))] where F ′∗is the transitive and re�exive 
losure of the �ow relation F ′.MVP(N) := {V P (f) | f ∈ MP (N)} is the set of pomsets of all maximal pro
esses of
N .De�nition 2.11Two nets N and N ′ are 
ompleted pomset tra
e equivalent, N ≃CPT N ′, if and only ifMVP(N) = MVP(N ′).To 
onsider bran
hing time semanti
s, we use failures equivalen
e, whi
h, while quite a
oarse bran
hing-time equivalen
e, is su�
ient for our means. Sin
e our 
onstru
tion doesnot introdu
e new 
ausalities nor removes parallelism, �ner bran
hing time equivalen
esshould not lead to di�erent results later on.De�nition 2.12 Let N = (S, O, U, F, M0) be a net, σ ∈ O∗ and X ⊆ O.
<σ, X> is a failure pair of N i�

∃M1. M0
σ

=⇒ M1 ∧ M1 X
τ

−→ ∧∀t ∈ X. M1 X

{t}
−→ .We de�ne F (N) := {<σ, X> | <σ, X> is a failure pair of N}.De�nition 2.13Two nets N and N ′ are failures equivalent, N ≃F N ′, i� F (N) = F (N ′).The following lemma might seem obvious, but it is nonetheless important, as many of thelater proofs depend on it. 7



2 Basi
 NotionsLemma 2.1 Let N = (S, O, ∅, F, M0) be a net (without silent transitions) and M ⊆ S.If M
σ

=⇒ M1 ∧ M
σ

=⇒ M2 then M1 = M2.Proof Let t ∈ O.
M

{t}
=⇒ M ′

1 ⇔ M
{t}
−→ M ′

1 and M
{t}
−→ M ′

1 ⇒ M ′
1 = (M \ •t) ∪ t•.Hen
e M

{t}
=⇒ M ′

1 ∧M
{t}
=⇒ M ′

2 ⇒ M ′
1 = M ′

2. The result follows for a tra
e σ by indu
tionon the length of σ. �A net N = (S, O, U, F, M0) with silent transitions is 
alled divergen
e free i� ∀M1 ∈ [M0〉
∃n ∈ N ∀M2, . . . , Mn ⊆ S. (M1

τ
−→ M2

τ
−→ · · ·

τ
−→ Mn ⇒ Mn X

τ
−→).

8



3 Fully Symmetri
 Asyn
hronyTo examine the di�eren
e between syn
hronous and asyn
hronous 
ommuni
ation, we willgive di�erent possible de�nitions of how asyn
hronous 
ommuni
ation 
an be modelledin Petri nets. A simple and intuitive method to do this is to insert invisible transitionsbetween visible ones and their prepla
es. This simulates that it may take time to removea token.De�nition 3.1 Let N = (S, O, ∅, F, M0) be a net.The fully symmetri
ally asyn
hronous implementation of N is de�ned as the netFSI(N) := (S ∪ Sτ , O, U ′, F ′, M0) with
Sτ := {st | t ∈ O, s ∈ •t} ,
U ′ := {ts | t ∈ O, s ∈ •t} and
F ′ := F ∩ (O × S)

∪ {(s, ts) | t ∈ O, s ∈ •t}

∪ {(ts, st) | t ∈ O, s ∈ •t}

∪ {(st, t) | t ∈ O, s ∈ •t} .We will use the abbreviations ◦x := {y | (y, x) ∈ F ′} and x◦ := {y | (x, y) ∈ F ′} insteadof •x or x• when making assertions about the �ow relation of an implementation.To understand the behaviour of the implementation, we �rst des
ribe the stru
ture ofthe rea
hable markings therein. Whenever the implementation enables some transition,�rst some silent transitions must �re, thereby moving tokens from the original pla
es ontothe newly introdu
ed bu�ering pla
es. To undo those silent transitions and get ba
k the
N :

a b

τ

a

τ

b

FSI(N) :

Figure 3.1: A net whi
h is not failures equivalent to its fully symmetri
ally asyn
hronousimplementation, N /∈ FSA(B), N ∈ SA(B) 9



3 Fully Symmetri
 Asyn
hronyoriginal marking we de�ne a fun
tion whi
h maps markings of the implementation ontomarkings of the original net.De�nition 3.2 Let N = (S, O, ∅, F, M0) be a net, let FSI(N) = (S∪Sτ , O, U ′, F ′, M0).Let τ← : S ∪ Sτ → S be the fun
tion de�ned by
τ←(p) :=







s i� p = st with st ∈ Sτ , s ∈ S, t ∈ O

p otherwise (p = s ∈ S)
.Furthermore, we de�ne a predi
ate whi
h is true on all markings of an implementationwhi
h 
an be rea
hed. Additionally we provide a distan
e fun
tion spe
ifying how manysilent transitions 
an be �red in sequen
e.De�nition 3.3 Let N = (S, O, ∅, F, M0) be a net and FSI(N) = (S∪Sτ , O, U ′, F ′, M0).The predi
ate α ⊆ P(S ∪ Sτ ) is de�ned as α(M) :⇔ τ←(M) ∈ [M0〉N ∧ ∀p, q ∈ M.

τ←(p) 6= τ←(q). The fun
tion d : P(S ∪Sτ ) → N is de�ned as d(M) := |M ∩{s|s ∈ S,
s• 6= ∅}|.Using these two de�nitions, we 
an now pro
eed to prove basi
 properties of how theimplementation works.Lemma 3.1 Let N = (S, O, ∅, F, M0) be a net, FSI(N) = S ∪ Sτ , O, U ′, F ′, M0) and

M ⊆ S ∪ Sτ .(i) α(M0)(ii) α(M) ⇒ (d(M) > 0 ⇔ ∃M ′ ⊆ S ∪ Sτ . M
τ

−→FSI(N) M ′)(iii) M [G)FSI(N)M
′ ∧ α(M) ⇒ ∀t ∈ G. (M \ ◦t) ∩ t◦ = ∅ ∧ τ←(M)

G∩O
−→N τ←(M ′) ∧

α(M ′)(iv) M
τ

−→FSI(N) M ′ ⇒ d(M) > d(M ′) ∧ τ←(M) = τ←(M ′)(v) M [G〉NM ′ ⇒ M
τ

−→
∗ G
−→

τ
−→

∗FSI(N) M ′Proof (i): By ∀s ∈ S. τ←(s) = s.(ii): �⇒�: d(M) > 0 ⇒ ∃p ∈ M∃t ∈ p•. By 
onstru
tion of FSI(N) then there exists a
M ′ with M [{tp}〉M

′ as α(M) and hen
e pt /∈ M .�⇐�: M
τ

−→FSI(N) M ′ ⇒ ∃tp ∈ U ′. M [{tp〉M
′. And ◦tp = {p} hen
e p ∈ M . By
onstru
tion of FSI(N) also ∃t ∈ O. p ∈ •t. Hen
e d(M) = |M ∩ {s|s ∈ S, s• 6= ∅}| ≥

|M ∩ {p}| > 0.(iii): Consider any t ∈ G∩O. Assume (M \ ◦t)∩ t◦ 6= ∅. Sin
e t◦ ⊆ S let p ∈ S su
h that
p ∈ M ∩ t◦. p /∈ •t as by 
onstru
tion of FSI(N) also pt ∈ M and τ←(p) = p = τ←(pt)whi
h would violate α(M). It follows that (τ←(M) \ •t) ∩ t• ⊇ {p} and N would not be
onta
t free as τ←(M) ∈ [M0〉N by α(M).10



Consider any tp ∈ G∩U ′. As ◦tp = {p} and tp
◦ = {pt} we have that (M \ ◦t)∩ t◦ 6= ∅ ⇒

p ∈ M ∧ pt ∈ M but τ←(p) = p = τ←(pt) whi
h would violate α(M).
M ′ = (M \ {s | s ∈ ◦t, t ∈ G}) ∪ {s | s ∈ t◦, t ∈ G}

= ((M \ {st | s ∈ •t, t ∈ G ∩ O}) \ {s | ts ∈ G ∩ U ′}) ∪

{st | ts ∈ G ∩ U ′} ∪ {s | s ∈ t•, t ∈ G ∩ O}Therefore
τ←(M ′) = τ←((M \ {st | s ∈ •t, t ∈ G ∩ O}) \ {s | ts ∈ G ∩ U ′}) ∪

τ←({st | ts ∈ G ∩ U ′}) ∪ τ←({s | s ∈ t•, t ∈ G ∩ O})

= τ←((M \ {st | s ∈ •t, t ∈ G ∩ O}) \ {s | ts ∈ G ∩ U ′}) ∪

{s | ts ∈ G ∩ U ′} ∪ {s | s ∈ t•, t ∈ G ∩ O}

= τ←(M \ {st | s ∈ •t, t ∈ G ∩ O})∪

{s | ts ∈ G ∩ U ′} ∪ {s | s ∈ t•, t ∈ G ∩ O} .Take any t ∈ G ∩ O and any s ∈ •t. Then st ∈ M and α(M) ⇒ s /∈ M ∧ ∄u ∈ O.
u 6= t∧su ∈ M . Hen
e τ←(M \{st | s ∈ •t, t ∈ G∩O}) = τ←(M)\{s | s ∈ •t, t ∈ G∩O}.Furthermore ∀ts ∈ G ∩ U ′. ◦ts = {s} ∧ s ∈ M .Thus we �nd

τ←(M ′) = τ←(M) \ {s | s ∈ •t, t ∈ G ∩ O} ∪ {s | s ∈ t•, t ∈ G ∩ O} .and 
on
lude that τ←(M)
G∩O
−→N τ←(M ′).We still need to prove that ∀p, q ∈ M ′. p 6= q ⇒ τ←(p) 6= τ←(q). Assume the 
ontrary,i.e. there are p, q ∈ M ′ with p 6= q ∧ τ←(p) = τ←(q). Sin
e α(M) at least one of p and q� say p � must not be present in M . Assume p ∈ Sτ . Then there exist s ∈ S, t ∈ O su
hthat st = p ∧ ts ∈ G and thereby τ←(p) = s. But then s ∈ ◦ts ⊆ M and by α(M) thereexists no u ∈ O with su ∈ M . Sin
e ts ∈ G ∧ s /∈ ts

◦ however s /∈ M ′. Furthermore by
onstru
tion of FSI(N) ∀v ∈ O ∪ U ′. s ∈ τ←(v◦ ∩ Sτ ) ⇒ ◦v = s and su
h a v 
ould not�re with ts in one step. Hen
e α(M ′) if p ∈ Sτ .If p ∈ S then τ←(p) = p and by 
onstru
tion of FSI(N) there exists a t ∈ G ∩ O with
p ∈ t◦ = t•. However α(M) ⇒ M ∈ [M0〉N and τ←(M)

G∩O
−→N τ←(M ′) ⇒ •t ⊆ τ←(M).Sin
e N is 
onta
t free, then (t• \ •t)∩ τ←(M ′) = ∅. Therefore (τ←(q) = τ←(p) = p∧p ∈

t• ∧ q ∈ M ′) ⇒ τ←(q) ∈ •t. Furthermore by 
onstru
tion of FSI(N), ◦t ∩ M ′ = ∅ and itfollows that either q ∈ S ∧ q = p or q = pu for some u ∈ O ∧ u 6= t, whi
h would violate
α(M) sin
e ◦t ⊆ M ⇒ pt ∈ M and ∀v ∈ O ∪ U ′. pu ∈ v◦ ⇒ ◦v = {p}. Hen
e α(M ′) if
p ∈ S.(iv): Let ts ∈ U ′ su
h that M [{ts}〉FSI(N)M

′. Then, by 
onstru
tion of FSI(N), s• 6= ∅.Furthermore ◦ts = {s}∧ ts
◦ = {st}. Hen
e M ′ = M \ {s}∪ {st} and d(M ′) = d(M)− 1∧

τ←(M ′) = τ←(M). 11



3 Fully Symmetri
 Asyn
hrony(v): Assume M [G〉NM ′. M ⊆ S by de�nition of N . Then, by 
onstru
tion of FSI(N),
M [{ts | t ∈ G, s ∈ •t}〉FSI(N)[{t | t ∈ G}〉FSI(N)M

′. The �rst part of that exe
ution 
an besplit into a sequen
e of singletons. �After those basi
 properties are established, we 
an use them to prove more intuitive
orollaries.Lemma 3.2 Let N be a net.FSI(N) is divergen
e free.Proof By Lemma 3.1 (i), (ii), (iii) and (iv). �Lemma 3.3 Let N = (S, O, ∅, F, M0) be a net.If N is 
onta
t free, so is FSI(N).Proof By Lemma 3.1, (i) and (iii). �The following lemma states that the original net and the implementation 
an performthe same a
tions, provided that the �nal marking is an original marking. The 
orre
tnessof this depends on the fa
t that all newly introdu
ed deadlo
k situations will have sometoken �stu
k� in a bu�er pla
e.Lemma 3.4 Let N = (S, O, ∅, F, M0) be a net, FSI(N) = (S ∪ Sτ , O, U ′, F ′, M0) and
M1 ∈ [M0〉N , M2 ⊆ S.(i) (M1

G
−→N M2) ⇔ (M1

τ
−→

∗FSI(N)
G

−→FSI(N)
τ

−→
∗FSI(N) M2)(ii) (M1

σ
=⇒N M2) ⇔ (M1

σ
=⇒FSI(N) M2)Proof (i): �⇒�: By applying Lemma 3.1 (v). �⇐�: By using Lemma 3.1 (i), (v)and (iii) we �nd that α(M1) ∧ α(M2). The result then follows from Lemma 3.1 (iii), as

τ←(M1) = M1 and τ←(M2) = M2 sin
e both M1 ⊆ S ∧ M2 ⊆ S.(ii): By 
omplete indu
tion on the length of σ. For σ = ε �⇒� is trivially true and �⇐� alsoholds be
ause ∀t ∈ U ′. t•∩Sτ 6= ∅ and therefore ∀M ′
2 ⊆ S. M1

ε
=⇒FSI(N) M ′

2 ⇒ M ′
2 = M1.Let t ∈ O. If (ii) holds for some σ then it also holds for σt due to (i) with G = {t}. �In addition to the above lemma it is also the 
ase that the implementation 
an alwayssimulate the original �optimally� in the sense that no super�uous transitions are �red andevery marking whi
h existed in the original tra
e is also rea
hed by the implementation.12



Lemma 3.5 Let N = (S, O, ∅, F, M0) be a net and let FSI(N) = (S∪Sτ , O, U ′, F ′, M0).Let M ⊆ S ∪ Sτ , σ ∈ O∗ su
h that M0
σ

=⇒FSI(N) M and let MS := τ←(M).Then M0
σ

=⇒FSI(N) MS and ∄M ′
S ⊆ S. M ′

S 6= MS ∧ M0
σ

=⇒FSI(N) M ′
S.Proof By indu
tion over the length of σ using Lemma 3.1 (i) and (iii) M0

σ
=⇒N τ←(M)wherefrom by using Lemma 3.1 (v) also M0

σ
=⇒FSI(N) τ←(M).Assume any other M ′ ⊆ S exists su
h that M0

σ
=⇒FSI(N) M ′. Then M0

σ
=⇒N τ←(M ′).But by Lemma 2.1 then τ←(M ′) = τ←(M). Sin
e M ⊆ S ∧ M ′ ⊆ S then M = M ′. �All those lemmas above 
an be 
ombined to the already mentioned fa
t that the onlydi�eren
e in behaviour between the original net and its implementation is the introdu
tionof new deadlo
ks, whi
h formally result in additional failures.Proposition 3.1 Let N = (S, O, ∅, F, M0) be a net.Then F (N) ⊆ F (FSI(N)).Proof Let FSI(N) = (S ∪ Sτ , O, U ′, F ′, M0). Let <σ, X> ∈ F (N), t ∈ X and let

M1 ⊆ S su
h that M0
σ

=⇒N M1.By using Lemma 3.1 (i), (iii) and (v) in an indu
tion over σ, also M0
σ

=⇒FSI(N) M1.Using Lemma 3.1 (iv) and (ii) there exists a marking M ′
1 su
h that M ′

1 X
τ

−→FSI(N) ∧
τ←(M ′

1) = τ←(M1) ∧ α(M ′
1).Consider a transition t ∈ X. Assume that t is not refused in M ′

1 by FSI(N), that is
∃M ′

2 ⊆ S ∪ Sτ . M ′
1[{t}〉FSI(N)M

′
2.Then by Lemma 3.1 (iii) and τ←(M ′

1) = M1 immediately M1
{t}
−→ τ←(M2) whi
h is a
ontradi
tion. Therefore <σ, X> ∈ FSI(N). �Finally we de�ne the 
lass of nets whi
h are asyn
hronous, by testing whether if theywhere to be implemented asyn
hronously they would still fun
tion 
orre
tly. A
tually wede�ne multiple 
lasses as di�erent equivalen
e relations lead to di�erent results.De�nition 3.4The 
lass of fully symmetri
ally asyn
hronous nets respe
ting linear time equivalen
eis de�ned as FSA(L) := {N | FSI(N) ≃CPT N}.The 
lass of fully symmetri
ally asyn
hronous nets respe
ting bran
hing time equiva-len
e is de�ned as FSA(B) := {N | FSI(N) ≃F N}.We also have obtained the following semi-stru
tural 
hara
terisation of FSA(B). 13



3 Fully Symmetri
 Asyn
hronyDe�nition 3.5A net N = (S, O, ∅, F, M0) has a partially rea
hable 
on�i
t i� ∃t, u ∈ O. t 6= u ∧
•t ∩ •u 6= ∅ and ∃M ∈ [M0〉.

•t ⊆ M ∨ •u ⊆ M .The 
orre
tness of the 
hara
terisation is proven below.Theorem 3.1A net N = (S, O, ∅, F, M0) is in FSA(B) i� N has no partially rea
hable 
on�i
t.Proof Let FSI(N) = (S ∪ Sτ , O, U ′, F ′, M0).�⇒�: Assume N has a partially rea
hable 
on�i
t. Then there exist t, u ∈ O, t 6= u,
σ ∈ O∗ and M ⊆ S su
h that M0

σ
=⇒N M , •t ∩ •u 6= ∅ and •t ⊆ M ∨ •u ⊆ M . Withoutloss of generality assume that •t ⊆ M .For every <σ, X> ∈ F (N) we then know that t /∈ X by Lemma 2.1.However M0

σ
=⇒FSI(N) M by Lemma 3.4. Let p ∈ •t ∩ •u. Then, by 
onstru
tion ofFSI(N), there exists M1 ⊆ S∪Sτ with M [{up}〉M1, p /∈ M1 and sin
e t 6= u also pt /∈ M1.Now let M2 ⊆ S ∪ Sτ su
h that M1

τ
−→

∗FSI(N) M2 ∧M2 X
τ

−→
∗FSI(N) (whi
h exists a

ordingto Lemma 3.2). Sin
e ∀v ∈ U ′. p /∈ v• ∧ (pt ∈ v• ⇒ p ∈ •v) we know that pt /∈ M2.But then M2 X

{t}
−→ and there exists a failure pair <σ, {t}> ∈ F (FSI(N)). We therebyknow that F (FSI(N)) 6= F (N).�⇐�: Assume N /∈ FSA(B). Then F (FSI(N)) 6= F (N) and F (FSI(N)) \F (N) 6= ∅ byProposition 3.1.Let <σ, X > ∈ F (FSI(N)) \ F (N). Then there exists an M1 ⊆ S ∪ Sτ su
h that

M0
σ

=⇒FSI(N) M1 ∧ M1 X
τ

−→ ∧∀t ∈ X. M1 X

{t}
−→.By Lemma 3.5 then also M0

σ
=⇒FSI(N) τ←(M1) and by Lemma 3.4 M0

σ
=⇒N τ←(M1).Let t ∈ X su
h that τ←(M1)

t
=⇒N (whi
h exists, otherwise <σ, X> ∈ F (N)). Let p ∈ •tsu
h that pt /∈ M1 (su
h pt exists, otherwise M1

{t}
−→FSI(N)).Sin
e τ←(M1)

t
=⇒N it follows that p ∈ τ←(M1). But p /∈ M1 otherwise M1

τ
−→FSI(N)whi
h would be a 
ontradi
tion. Hen
e there must exists some u ∈ O with pu ∈ M1. By
onstru
tion of FSI(N) then p ∈ •u.But then t, u ∈ O ∧ •t ∩ •u 6= ∅∧ τ←(M1) ∈ [M0〉N ∧ •t ⊆ τ←(M1) and N has a partiallyrea
hable 
on�i
t. �From those results it is already visible that when 
onsidering bran
hing time equivalen
esonly very simple nets are failures equivalent to their fully symmetri
ally asyn
hronousimplementation. An example whi
h already fails is shown in Figure 3.1.14



The net 
lass FSA(L) is substantially larger. However it 
oin
ides with some other 
lassof nets whi
h will be de�ned in the next se
tion. The proof of that 
oin
iden
e mustnaturally go after the de�nitions of the other net 
lass and is 
ontained in the nextse
tion.
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4 Symmetri
 Asyn
hronySin
e we are interested in more substantial results regarding bran
hing time equivalen
es,we 
hange our de�nition somewhat and only insert invisible transitions wherever a tran-sition has multiple prepla
es, when the syn
hronous removal of tokens is really essential.De�nition 4.1 Let N = (S, O, ∅, F, M0) be a net. Let Ob = {t | t ∈ O, |•t| > 1}.The symmetri
ally asyn
hronous implementation of N is de�ned as the netSI(N) := (S ∪ Sτ , O, U ′, F ′, M0) with
Sτ := {st | t ∈ Ob, s ∈ •t} ,
U ′ := {ts | t ∈ Ob, s ∈ •t} and
F ′ := F ∩

(

(O × S) ∪ (S × (O \ Ob))
)

∪ {(s, ts) | t ∈ Ob, s ∈ •t}

∪ {(ts, st) | t ∈ Ob, s ∈ •t}

∪ {(st, t) | t ∈ Ob, s ∈ •t} .The e�e
t of this transformation 
an be seen in Figure 1.1. A dis
ussion in what sense thisnew transformation is 
onsistent with intuition follows later, after the details are mademore 
lear.Similar to Se
tion 3, we use ◦x and x◦ if the �ow relation of the implementation isdes
ribed. As before we establish basi
 properties of our transformation whi
h will beuseful later on. To do so, we again wish to undo the e�e
t of extraneous τ -transitions.The fun
tion to do so is the same τ← de�ned earlier.It turns out that the basi
 prin
iples of Lemma Lemma 3.1 also holds for this modi�edversion of asyn
hronous implementation. However the invariant and distan
e fun
tionsneed slight modi�
ation.De�nition 4.2 Let N = (S, O, ∅, F, M0) be a net and SI(N) = (S ∪ Sτ , O, U ′, F ′, M0).The predi
ate β ⊆ P(S ∪ Sτ ) is de�ned as β(M) :⇔ τ←(M) ∈ [M0〉N ∧ ∀p, q ∈ M.
τ←(p) 6= τ←(q). The fun
tion e : P(S∪Sτ ) → N is de�ned as e(M) := |M ∩{s | s ∈ S,
∃t ∈ s•. |•t| > 1}|.

16



Lemma 4.1 Let N = (S, O, ∅, F, M0) be a net, SI(N) = S ∪ Sτ , O, U ′, F ′, M0) and
M ⊆ S ∪ Sτ .(i) β(M0)(ii) β(M) ⇒ (e(M) > 0 ⇔ ∃M ′ ⊆ S ∪ Sτ . M

τ
−→SI(N) M ′)(iii) M [G)SI(N)M

′ ∧ β(M) ⇒ ∀t ∈ G. (M \ ◦t) ∩ t◦ = ∅ ∧ τ←(M)
G∩O
−→N τ←(M ′) ∧

β(M ′)(iv) M
τ

−→SI(N) M ′ ⇒ e(M) > e(M ′) ∧ τ←(M) = τ←(M ′)(v) M [G〉NM ′ ⇒ M
τ

−→
∗ G
−→

τ
−→

∗SI(N) M ′Proof (i): By ∀s ∈ S. τ←(s) = s.(ii): �⇒�: e(M) > 0 ⇒ ∃p ∈ M∃t ∈ p•. |•t| > 1. By 
onstru
tion of SI(N) then thereexists a M ′ with M [{tp}〉M
′ as β(M) and hen
e pt /∈ M .�⇐�: M

τ
−→SI(N) M ′ ⇒ ∃tp ∈ U ′. M [{tp〉M

′. And ◦tp = {p} hen
e p ∈ M . By
onstru
tion of SI(N) also ∃t ∈ O. p ∈ •t∧|•t| > 1. Hen
e e(M) = |M ∩{s|s ∈ S, ∃t ∈ s•.
|•t| > 1}| ≥ |M ∩ {p}| > 0.(iii): Consider any t ∈ G ∩ O. Assume (M \ ◦t) ∩ t◦ 6= ∅. Sin
e t◦ ⊆ S let p ∈ S su
hthat p ∈ (M \ ◦t) ∩ t◦.There are two 
ases:
|•t| = 1: If p ∈ •t also p ∈ ◦t wi
h would be a 
ontradi
tion with p ∈ M \ ◦t. Otherwise
p /∈ •t and (τ←(M) \ •t) ∩ t• ⊇ {p} and N would not be 
onta
t free as τ←(M) ∈ [M0〉Nby β(M).
|•t| > 1: p /∈ •t as by 
onstru
tion of SI(N) also pt ∈ M and τ←(p) = p = τ←(pt) whi
hwould violate β(M). Hen
e (τ←(M) \ •t) ∩ t• ⊇ {p} and N would not be 
onta
t free as
τ←(M) ∈ [M0〉N by β(M).Consider any tp ∈ G∩U ′. As ◦tp = {p} and tp

◦ = {pt} we have that (M \ ◦t)∩ t◦ 6= ∅ ⇒
p ∈ M ∧ pt ∈ M but τ←(p) = p = τ←(pt) whi
h would violate β(M).Let Ob := {t | t ∈ O, |•t| > 1} and Onb := {t | t ∈ O, |•t| = 1}.

M ′ = (M \ {s | s ∈ ◦t, t ∈ G}) ∪ {s | s ∈ t◦, t ∈ G}

= (M \ ({st | s ∈ •t, t ∈ G ∩ Ob} ∪ {s | s ∈ •t, t ∈ G ∩ Onb} ∪ {s | ts ∈ G ∩ U ′}))∪

{st | ts ∈ G ∩ U ′} ∪ {s | s ∈ t•, t ∈ G ∩ O} 17



4 Symmetri
 Asyn
hronyTherefore
τ←(M ′) = τ←(M \({st|s ∈ •t, t ∈ G ∩ Ob}∪{s|s ∈ •t, t ∈ G ∩ Onb}∪{s|ts ∈ G ∩ U ′})) ∪

τ←({st | ts ∈ G ∩ U ′}) ∪ τ←({s | s ∈ t•, t ∈ G ∩ O})

= τ←(M \({st|s ∈ •t, t ∈ G ∩ Ob}∪{s|s ∈ •t, t ∈ G ∩ Onb}∪{s|ts ∈ G ∩ U ′})) ∪

{s | ts ∈ G ∩ U ′} ∪ {s | s ∈ t•, t ∈ G ∩ O}

= τ←(M \ ({st | s ∈ •t, t ∈ G ∩ Ob} ∪ {s | s ∈ •t, t ∈ G ∩ Onb})) ∪

{s | ts ∈ G ∩ U ′} ∪ {s | s ∈ t•, t ∈ G ∩ O} .Take any t ∈ G∩Ob and any s ∈ •t. Then st ∈ M and β(M) ⇒ s /∈ M ∧∄u ∈ O. u 6= t∧
su ∈ M . Take any t ∈ G∩Onb and the s ∈ •t. Then s ∈ M and β(M) ⇒ ∄u ∈ O. su ∈ M .Hen
e

τ←(M \ ({st | s ∈ •t, t ∈ G ∩ Ob} ∪ {s | s ∈ •t, t ∈ G ∩ Onb}))

= τ←(M) \ ({s | s ∈ •t, t ∈ G ∩ Ob} ∪ {s | s ∈ •t, t ∈ G ∩ Onb})

= τ←(M) \ {s | s ∈ •t, t ∈ G ∩ O} .Furthermore ∀ts ∈ G ∩ U ′. ◦ts = {s} ∧ s ∈ M .Thus we �nd
τ←(M ′) = τ←(M) \ {s | s ∈ •t, t ∈ G ∩ O} ∪ {s | s ∈ t•, t ∈ G ∩ O} .and 
on
lude that τ←(M)

G∩O
−→N τ←(M ′).We still need to prove that ∀p, q ∈ M ′. p 6= q ⇒ τ←(p) 6= τ←(q). Assume the 
ontrary,i.e. there are p, q ∈ M ′ with p 6= q ∧ τ←(p) = τ←(q). Sin
e β(M) at least one of p and q� say p � must not be present in M . Assume p ∈ Sτ . Then there exist s ∈ S, t ∈ O su
hthat st = p ∧ ts ∈ G and thereby τ←(p) = s. But then s ∈ ◦ts ⊆ M and by β(M) thereexists no u ∈ O with su ∈ M . Sin
e ts ∈ G ∧ s /∈ ts

◦ however s /∈ M ′. Furthermore by
onstru
tion of SI(N) ∀v ∈ O ∪U ′. s ∈ τ←(v◦ ∩ Sτ ) ⇒ ◦v = s and su
h a v 
ould not �rewith ts in one step. Hen
e β(M ′) if p ∈ Sτ .If p ∈ S then τ←(p) = p and by 
onstru
tion of SI(N) there exists a t ∈ G ∩ O with
p ∈ t◦ = t•. However β(M) ⇒ M ∈ [M0〉N and τ←(M)

G∩O
−→N τ←(M ′) ⇒ •t ⊆ τ←(M).Sin
e N is 
onta
t free, then (t• \ •t) ∩ τ←(M ′) = ∅. Therefore (τ←(q) = τ←(p) = p ∧

p ∈ t• ∧ q ∈ M ′) ⇒ τ←(q) ∈ •t.If |•t| > 1 by 
onstru
tion of SI(N), ◦t ∩ M ′ = ∅ and it follows that either q ∈ S ∧ q = por q = pu for some u ∈ O∧u 6= t, whi
h would violate β(M) sin
e ◦t ⊆ M ⇒ pt ∈ M and
∀v ∈ O ∪ U ′. pu ∈ v◦ ⇒ ◦v = {p}. Hen
e β(M ′) if p ∈ S. Otherwise •t = {τ←(q)} = {p}and also ◦t = {p}. But p was assumed to be not in M .Hen
e β(M ′) if p ∈ S.18



(iv): Let ts ∈ U ′ su
h that M [{ts}〉SI(N)M
′. Then, by 
onstru
tion of SI(N), t ∈ s• ∧

|•t| > 1. Furthermore ◦ts = {s} ∧ ts
◦ = {st}. It follows that M ′ = M \ {s} ∪ {st} and

e(M ′) = e(M) − 1 ∧ τ←(M ′) = τ←(M).(v): Assume M [G〉NM ′. M ⊆ S by de�nition of N . Let Ob := {t | t ∈ O, |•t| > 1}. Then,by 
onstru
tion of SI(N), M [{ts | t ∈ G ∩ Ob, s ∈ •t}〉SI(N)[{t | t ∈ G}〉SI(N)M
′. The �rstpart of that exe
ution 
an be split into a sequen
e of singletons. �As Lemma 4.1 is basi
ally the same as Lemma 3.1 it should 
ome as no surprise that the
orollaries also hold.Lemma 4.2 Let N be a net.SI(N) is divergen
e free.Proof By Lemma 4.1 (i), (ii), (iii) and (iv). �Lemma 4.3 Let N = (S, O, ∅, F, M0) be a net.If N is 
onta
t free, so is SI(N).Proof By Lemma 4.1, (i) and (iii). �The following lemma shows that all behaviours of N 
an be simulated by SI(N) and vi
eversa for visible behaviours of SI(N). Note however that SI(N) might be able to deadlo
kin more 
ases than N . One typi
al 
ase is shown in Figure 4.1.Lemma 4.4 Let N = (S, O, ∅, F, M0) be a net, SI(N) = (S ∪ Sτ , O, U ′, F ′, M0) and

M1 ∈ [M0〉N , M2 ⊆ S.(i) (M1
G

−→N M2) ⇔ (M1
τ

−→
∗SI(N)

G
−→SI(N)

τ
−→

∗SI(N) M2)(ii) (M1
σ

=⇒N M2) ⇔ (M1
σ

=⇒SI(N) M2)Proof Completely parallel to Lemma 3.4, using Lemma 4.1 instead of Lemma 3.1. �Lemma 4.5 Let N = (S, O, ∅, F, M0) be a net and let SI(N) = (S ∪Sτ , O, U ′, F ′, M0).Let M ⊆ S ∪ Sτ , σ ∈ O∗ su
h that M0
σ

=⇒SI(N) M and let MS := τ←(M).Then M0
σ

=⇒SI(N) MS and ∄M ′
S ⊆ S. M ′

S 6= MS ∧ M0
σ

=⇒SI(N) M ′
S.Proof Completely parallel to Lemma 3.5, using Lemma 4.1 instead of Lemma 3.1. �19



4 Symmetri
 Asyn
hrony
N :

a b

SI(N) :

ττ

a b

⇒

ττ

a bFigure 4.1: The implementation rea
hed a deadlo
k, whi
h was not possible before, hen
e
N /∈ SA(B). But N ∈ AA(H, B).Proposition 4.1 Let N = (S, O, ∅, F, M0) be a net and SI(N) = (S∪Sτ , O, U ′, F ′, M0).Then F (N) ⊆ F (SI(N)).Proof Completely parallel to Proposition 3.1, using Lemma 4.1 instead of Lemma 3.1.

�Similar as we did for interleaving behaviour in Lemma 4.4, we also relate the possiblepro
esses of a net to those of its implementation. Due to time 
onstraints the proofs andbasi
 properties 
annot be presented as elaborate as we did for the interleaving 
ase.Lemma 4.6 Let N = (S, O, ∅, F, M0) be a net, Nf = (Sf , Of , ∅, Ff , M0f) an o

urren
enet and f : Sf ∪ Of → S ∪ O a fun
tion. Let SI(N) = (S ∪ Sτ , O, U ′, F ′, M0) andSI(Nf) = (Sf ∪ Sτ
f , Of , U

′
f , F

′
f , M0f).Let SI(f) : Sf ∪ Sτ

f ∪ Of ∪ U ′f → S ∪ Sτ ∪ O ∪ U be the fun
tion de�ned bySI(f)(x) :=















st i� x = pu ∈ Sτ
f with s = f(p) and t = f(u)

ts i� x = up ∈ U ′f with s = f(p) and t = f(u)

f(x) otherwise .Then f is a pro
ess of N i� SI(f) is a pro
ess of SI(N).Proof �⇒�: Assume f is a pro
ess of N . We show that SI(f) is a pro
ess of SI(N).SI(f)(Sf) = f(Sf) ⊆ SSI(f)(Sτ
f ) = {st | pu ∈ Sτ

f , s = f(p), t = f(u)} ⊆ S ∪ SτSI(f)(Of) = f(Of) ⊆ OSI(f)(U ′f) = {ts | up ∈ U ′f , s = f(p), t = f(u)} ⊆ U ′SI(f)(M0f ) = f(M0f ) = M0We show that SI(f) is inje
tive over sli
es.20



Let C be a sli
e of SI(Nf), then τ←(C) is a sli
e of Nf by 
onstru
tion of SI(Nf). Let
x, y ∈ C su
h that SI(f)(x) = SI(f)(y).If x ∈ Sf then by 
onstru
tion of SI(f) also y ∈ Sf , f(x) = SI(f)(x) = SI(f)(y) = f(y)and, sin
e f is inje
tive over sli
es, x = y.Else x ∈ Sτ

f and by 
onstru
tion of SI(f) also y ∈ Sτ
f . Therefore let pu = x, qv = y and

st = SI(f)(x) = SI(f)(y). Then f(u) = f(v) = t ∧ f(p) = f(q) = s and thereby p = q as
f is inje
tive over sli
es and p = τ←(pu)∧ q = τ←(qv). Yet u ∈ p• and v ∈ p• but |p•| = 1and hen
e u = v. Therefore pu = qv.It remains to be shown that SI(f) respe
ts pre- and postsets of transitions.Let t ∈ Of ∪ U ′f .SI(f) respe
ts the postset of t: If t ∈ Of , then SI(f)(t)• = f(t)• = f(t•) = SI(t)(t•) as
t• ⊆ Sf . Else t = up ∈ U ′f and SI(f)(t)• =

(

f(u)f(p)

)•
= {f(p)f(u)} = SI(f)({pu}) =SI(f)(t•).SI(f) respe
ts the preset of t: t ∈ Of \ Ob

f or t ∈ Ob
f or t ∈ U ′f . If t ∈ Of \ Ob

f , then
•SI(f)(t) = •f(t) = f(•t) = SI(f)(•t) as •t ⊆ Sf . If t ∈ Ob

f then •SI(f)(t) = •f(t) =

{f(s)f(t) | (f(s), f(t)) ∈ F} = SI(f)(•t). If t = up ∈ U ′f then •SI(f)(t) = •
(

f(u)f(p)

)

=

{f(p)} = SI(f)({p}) = SI(f)(•t).�⇐�: Assume SI(f) is a pro
ess of SI(N). We show that f is a pro
ess of N .
f(Sf) = SI(f)(Sf) ⊆ S ∪ Sτ ∧ f(Sf) ⊆ S ∪ O hen
e f(Sf) ⊆ S

f(Of) = SI(f)(Of) ⊆ O

f(M0f ) = SI(f)(M0f) = M0We show that f is inje
tive over sli
es.Let C be a sli
e of Nf , then C is also a sli
e of SI(Nf) by 
onstru
tion of SI(Nf ). Let
x, y ∈ C su
h that f(x) = f(y). Then also SI(f)(x) = SI(f)(y) sin
e x, y ∈ Sf . Sin
eSI(f) is inje
tive over sli
es, x = y.It remains to be shown that f respe
ts pre- and postsets of transitions.Let t ∈ Of .
f respe
ts the postset of t: f(t•) = SI(f)(t•) = SI(f)(t)• = f(t)• as t• ⊆ Sf .
f respe
ts the preset of t:Let Ob := {t ∈ O | 1 < |•t|} and Ob

f := {t ∈ Of | 1 < |•t|}.If t /∈ Ob
f then f(•t) = SI(f)(•t) = •SI(f)(t) = •f(t) as {s | (s, t) ∈ F ′f} ⊆ Sf .Else t ∈ Ob

f . Let ⋆x = {y | (y, x) ∈ F ′f} and x⋆ = {y | (x, y) ∈ F ′f}. By 
onstru
tion ofSI(f), ∀v ∈ Ob. •v = ◦◦◦v, ∀u ∈ Ob
f .
•u = ⋆⋆⋆u and similarly for the postsets. Sin
e SI(f)is a pro
ess, ∀u ∈ Ob

f . SI(f)(⋆u) = ◦SI(f)(u) and similarly for the postset. 21



4 Symmetri
 Asyn
hronyThereby
f(•t) = SI(f)(•t) = SI(f)(⋆⋆⋆t) = ◦SI(f)(⋆⋆t)) = ◦SI(f)({u ∈ Of ∪ U ′f | u⋆ ∩ ⋆t 6= ∅}) .By 
onstru
tion of SI(N), there exists exa
tly one u ∈ Of ∪ U ′f for ea
h pt ∈ ⋆t su
hthat pt ∈ u⋆, namely u = tp. Furthermore there exists exa
tly one v ∈ O ∪ U ′ withSI(f)(pt) ∈ v◦, namely v = f(t)f(p) = SI(f)(u). Hen
e ∀pt ∈

⋆t. SI(f)(⋆pt) = ◦SI(f)(pt).Thereby we have ◦SI(f)(⋆⋆t) = ◦◦SI(f)(⋆t) = ◦◦◦SI(f)(t) = •SI(f)(t) = •f(t). �SI(f) will be used later with the same de�nition as in Lemma 4.6.Not only 
an every visible behaviour of a net be simulated by its implementation, but theonly di�eren
e between the sets of possible behaviours is the existen
e of new possibledeadlo
ks in the transformed version of the net.Lemma 4.7 Let N = (S, O, ∅, F, M0) be a net.Then MVP(N) ⊆ MVP(SI(N)).Proof Let f be a maximal pro
ess of N . Let Nf = (Sf , Of , ∅, Ff , M0f) be the o

ur-ren
e net f is based on. Then SI(f) is a pro
ess of SI(N) a

ording to Lemma 4.6 basedupon some o

urren
e net SI(Nf) = (Sf ∪ Sτ
f , Of , Uf , F

′
f , M0f).We show that SI(f) 
an be extended to a maximal pro
ess of SI(N) without 
hangingthe visible pomset.Note that SI(Nf)

◦ = N◦f by 
onstru
tion of SI(Nf). Assume there exists a t ∈ Of su
hthat SI(Nf )
◦ t

=⇒SI(N).If |•t| = 1 then •t ⊆ N◦f be
ause ∀u ∈ Uf . u• ⊆ Sτ
f but •t ⊆ Sf . Thus f would not bemaximal.In the 
ase of |•t| > 1, 
onsider a pla
e pt ∈

•t. Sin
e SI(Nf)
◦ ⊆ Sf and by 
onstru
tionof SI(Nf) it follows that SI(Nf)

◦ τ
−→

∗ {tp}
−→

τ
−→

∗ {t}
−→. But •tp = {p}. As above ∀u ∈ Uf .

u• ⊆ Sτ
f . Hen
e the invisible transitions in the �rst τ

−→
∗ 
annot have marked p and thus

p ∈ SI(Nf)
◦. Repeating this argument for ea
h pt ∈

•t we �nd that {s | (s, t) ∈ F} ⊆ N◦f .Thus f would not be maximal.Therefore no visible transition 
an subsequently get enabled in SI(Nf ) if f is maximal.Furthermore ∀t ∈ Uf .
•t ⊆ Sf ∧ t• ⊆ Sτ

f and hen
e only �nitely many invisible transitionsare possible. Thus SI(f) 
an be extended to a maximal pro
ess of SI(N) with V P (SI(f)) =
V P (f). �By observing whi
h nets preserve their behaviour if implemented asyn
hronously, we 
an
lassify them as follows.22



De�nition 4.3(i) The 
lass of symmetri
ally asyn
hronous nets respe
ting linear time equivalen
eis de�ned as SA(L) := {N | SI(N) ≃CPT N}.(ii) The 
lass of symmetri
ally asyn
hronous nets respe
ting bran
hing time equiva-len
e is de�ned as SA(B) := {N | SI(N) ≃F N}.We return to the question of how large FSA(L) is. It turns out that FSA(L) = SA(L)as shown in the following lemma. We only prove one dire
tion, as the other is intuitively
lear. Requiring more asyn
hrony should not enlarge a 
lass of nets.Proposition 4.2 Let N be a net with SI(N) ≃CPT N .Then FSI(N) ≃CPT N .Proof Let SI(N) = (S ∪Sτ , O, U ′, F ′, M0) and FSI(N) = (S ∪Sτ ′′, O, U ′′, F ′′, M0). Let
g ∈ MP (SI(N)) with the asso
iated o

urren
e net Ng = (Sg ∪Sτ

g , Og, Ug, Fg, M0g) where
s ∈ Sτ

g ⇔ g(s) ∈ Sτ .Then the net Nh = (Sg ∪ Sτ
h , Og, Uh, Fh, M0g) is an o

urren
e net and the fun
tion hbased upon it is a pro
ess of FSI(N) if de�ned as follows:

Onb := {t | t ∈ Og, |{s | (s, t) ∈ Fg}| = 1}

Sτ
h := Sτ

g ∪ {st | (s, t) ∈ Fg, t ∈ Onb}

Uh := Ug ∪ {ts | (s, t) ∈ Fg, t ∈ Onb}

Fh := (Fg \ {(s, t) | (s, t) ∈ Fg, t ∈ Onb})

∪ {(s, ts), (ts, st), (st, t) | (s, t) ∈ Fg, t ∈ Onb}

h(x) :=















g(t)g(s) if x = ts ∈ Uh \ Ug

g(s)g(t) if x = st ∈ Sτ
h \ Sτ

g

g(x) otherwiseFirst we show that indeed Nh is an o

urren
e net: Sin
e (x, y) ∈ Fh ⇒ (x, y) ∈ F+
gwe have that ∀x, y ∈ Sg ∪ Sτ

h ∪ Oh ∪ Uh. (x, y) ∈ F+
h ⇒ (y, x) /∈ F+

h . Furthermore
∀s ∈ Sg ∪ Sτ

h . {t | (t, s) ∈ Fh} = {t | (t, s) ∈ Fg} and thus ∀s ∈ Sg ∪ Sτ
h . |•s| ≤ 1 and also

M0g = {s | •s = ∅}. Sin
e ∀s ∈ Sg. |s
•| = 1 also ∀s ∈ Sg ∪ Sτ

h . |s•| ≤ 1.Thus Nh is an o

urren
e net. We now 
ontinue by proving that h is indeed a pro
ess ofFSI(N). 23



4 Symmetri
 Asyn
hrony
h(Sg ∪ Sτ

h) = g(Sg) ∪ {g(s)g(t) | (s, t) ∈ Fg, t ∈ Onb}

⊆ S ∪ Sτ ′′ ∪ {st | (s, t) ∈ F ′, |•t| > 1}

= S ∪ Sτ ′′

h(Og) = g(Og) ⊆ O

h(Uh) = g(Ug) ∪ {g(t)g(s) | (s, t) ∈ Fg, t ∈ Onb}

⊆ U ′′ ∪ {ts | (s, t) ∈ F ′, |•t| > 1}

= U ′′

h(M0g) = g(M0g) ⊆ M0Let C be a sli
e of Nh. Assume there exist p, q ∈ C, p 6= q with h(p) = h(q). If p = st ∈ Sτ
h ,let p′ = s otherwise let p′ = p and similarly for q′. Be
ause ∀s ∈ Sg. |s

•| ≤ 1 we havethat p′ 6= q′. Sin
e h(p) = h(q) also h(p′) = h(q′). But p′, q′ ∈ Sg and hen
e g(p′) = g(q′).Be
ause (p′, p) ∈ F ∗h and (q′, q) ∈ F ∗h we know that neither (p′, q′) ∈ F+
g nor (q′, p′) ∈ F+

g .Thus the set {p′, q′} 
an be extended to a sli
e of Ng over whi
h g would not be inje
tive.This would be a 
ontradi
tion and therefore h must be inje
tive over sli
es.
h respe
ts the postset of transitions: For every t ∈ Og ∪ Ug

h(t•) = h({s | (t, s) ∈ Fg}) = g({s | (t, s) ∈ Fg}) = {s | (g(t), s) ∈ F ′} = h(t)• ,whereas for every t ∈ Uh \ Ug, say t = up, we have
h(up

•) = h({pu}) = {g(p)g(u)} = g(u)g(p)
• = h(up)

• .
h respe
ts the preset of transitions: For every t ∈ Ug ∪ Og \ Onb

h(•t) = h({s | (s, t) ∈ Fg}) = g({s | (s, t) ∈ Fg}) = {s | (s, g(t)) ∈ F ′} = •h(t) ,whereas for t ∈ Onb

h(•t) = h({st | (s, t) ∈ Fg}) = {g(s)g(t) | (s, t) ∈ Fg} = {st | (s, g(t)) ∈ F ′} = •h(t)and for t ∈ Uh \ Ug, say t = up, we have
h(•t) = h({u}) = {g(u)} = •g(u)g(p) = •h(t) .Additionally h 
an be extended to a maximal pro
ess with the same visible pomset byexe
uting remaining elements of U ′′ \ U ′.Conversely let h ∈ MP (FSI(N)). Let the asso
iated o

urren
e net be Nh = (Sh ∪

Sτ
h, Oh, Uh, Fh, M0h).24



Then the net Ng = (Sh ∪ Sτ
g , Oh, Ug, Fg, M0h) is an o

urren
e net and the fun
tion gbased upon it is a maximal pro
ess of SI(N) if de�ned as follows:

Unb := {t | t ∈ Uh, h(t) ∈ U ′′ \ U ′}

Sτ
g := Sτ

h \ {p | (u, p) ∈ Fh, u ∈ Unb}

Ug := Uh \ Unb

Fg :=
(

Fh\
(

{(s, u), (u, p) | s ∈ Sh, u ∈ Unb, p ∈ Sτ
h})∪

{(p, t) | (u, p) ∈ Fh, u ∈ Unb, p ∈ Sτ
h , t ∈ Oh}

))

∪ {(s, t) | {(s, u), (u, p), (p, t)} ⊆ Fh, s ∈ Sh, t ∈ Oh, u ∈ Unb, p ∈ Sτ
h}

g := h ↾ Sh ∪ Sτ
g ∪ Oh ∪ UgFrom the de�nition we get F+

g ⊆ F+
h , thus F+

g has no 
y
les. Additionally Fg ∩ ((Og ∪
Ug) × (Sh ∪ Sτ

g )) = Fh ∩ ((Og ∪ Ug)(×Sh ∪ Sτ
g )) and therefore ∀s ∈ Sh ∪ Sτ

g . |•s| ≤ 1 and
M0h = {s|•s = ∅}. Assume that ∃s ∈ Sh ∪ Sτ

g . |{t | (s, t) ∈ Fg}| > 1. Clearly, this
an only o

ur due to the last 
lause of Fg. However the other two 
lauses would haveremoved any post-transitions of s before. Hen
e ∀s ∈ Sh ∪ Sτ
g . |s•| ≤ 1.Therefore Ng is an o

urren
e net. We now prove that g is a maximal pro
ess of SI(N).

g(Sh ∪ Sτ
g ) = h(Sh ∪ Sτ

g ) ⊆ S ∪ Sτ

g(Oh) = h(Oh) ⊆ O

g(Ug) = h(Uh) \ {ts | s ∈ S, t ∈ O, |•t| > 1} ⊆ U ′

g(M0h) = h(M0h) ⊆ M0Let C be a sli
e of Ng. C is then also a sli
e of Nh be
ause F+
h ∩(Sh∪Sτ

g ∪Oh∪Ug)
2 = F+

g .If p, q ∈ C, p 6= q, g(p) = g(q) then also h(p) = h(q) whi
h is a 
ontradi
tion sin
e h isinje
tive over sli
es. Hen
e g must be inje
tive over sli
es as well.
g respe
ts the postset of transitions: For every t ∈ Oh ∪ Ug

g(t•) = h(t•) = h(t)• = g(t)• .
g respe
ts the preset of transitions: If t ∈ Oh, |

•t| > 1 ∨ t ∈ Ug then
g(•t) = h(•t) = •h(t) = •g(t) .If t ∈ Oh, |

•t| ≤ 1 then
g(•t) =h({s | {(s, u), (u, p), (p, t)} ⊆ Fh, u ∈ Uh, p ∈ Sτ

h})

={s | (s, h(u)) ∈ F ′′, {(u, p), (p, t)} ⊆ Fh, u ∈ Uh, p ∈ Sτ
h}) . 25



4 Symmetri
 Asyn
hronyHowever every pla
e st ∈ Sτ ′′ has exa
tly one pre-transition, namely ts, and thus
{s | (s, h(u)) ∈ F ′′, {(u, p), (p, t)} ⊆ Fh, u ∈ Uh, p ∈ Sτ

h})

= {s | {(s, u), (u, h(p))} ⊆ F ′′, (p, t) ∈ Fh, u ∈ U ′′, p ∈ Sτ
h})

= {s | {(s, u), (u, p), (p, h(t))} ⊆ F ′′, u ∈ U ′′, p ∈ Sτ ′′})

= {s | (s, h(t)) ∈ F ′}) = •g(t) .To prove that g is maximal, assume N◦g would enable some transition t in SI(N). If t ∈ U ,then •t ⊆ S and the same t would also be enabled in FSI(N) by N◦h , hen
e t ∈ O. If
|•t| > 1 again t would be enabled in FSI(N) by N◦h . Let •t = {s} ⊆ N◦g ∩ S. But theneither s ∈ N◦h or st ∈ N◦h , and either ts or t would be enabled in FSI(N) by N◦h , whi
h isa 
ontradi
tion. Hen
e g must be maximal. �The question remains however why FSA(B) is so small. The motivation for bran
hingtime equivalen
es is the impli
it assumption that the system under 
onsideration will laterbe embedded into an environment whi
h might prohibit exe
ution of some a
tions.If this embedment is modelled within the net itself however, the net will often 
easeto be symmetri
ally asyn
hronous with respe
t to linear time as the 
ommuni
ation ofthe net with the environment 
reates ba
kward bran
hing transitions. Unsurprisinglythis happens exa
tly if the net or the environment is not failures equivalent to its fullysymmetri
ally asyn
hronous implementation.This observation hints that our de�nition of symmetri
 asyn
hrony might be a bit o�although it gives ni
er results. If the 
ommuni
ation with the environment is assumed tobe syn
hronous however, the ba
kward bran
hing nature of the 
ommuni
ating transitionsposes no problems, and our 
onstru
tion of SI(N) des
ribe the situation.After the 
onne
tion between FSA(B) and SA(B) have been 
leared up, we now give asemi-stru
tural 
hara
terization of SA(B).De�nition 4.4A net N = (S, O, ∅, F, M0) has a partially rea
hable N i� ∃t, u ∈ O. t 6= u∧•t∩•u 6= ∅∧

|•t| > 1 ∧ ∃M ∈ [M0〉N . •t ⊆ M ∨ •u ⊆ M .Theorem 4.1A net N without silent transitions is in SA(B) i� N has no rea
hable N.Proof �⇒�: Suppose N = (S, O, ∅, F, M0) has a rea
hable N. We will show thatSI(N) 6≃F N . Sin
e N has a rea
hable N, ∃t, u ∈ O. t 6= u ∧ •t ∩ •u 6= ∅ ∧ |•t| > 1 ∧
∃M ∈ [M0〉N . •t ∈ M ∨ •u ∈ M .Let p ∈ •t ∩ •u and q ∈ •t with q 6= p. Then p ∈ M . Let SI(N) = (S ∪ Sτ , O, U ′, F ′, M0).By Lemma 4.4 there exists a σ ∈ O∗ with M0

σ
=⇒N M .There are two 
ases:26



Case 1, •u ⊆ M : We will show that <σ, {u}> ∈ F (SI(N)) but <σ, {u}> 6= F (N).Sin
e N has no silent transitions by Lemma 2.1 whenever M0
σ

=⇒N M ′ then M ′ = M .Sin
e M
{u}
−→N we have that <σ, {u}> /∈ F (N).Let M1 ⊆ S ∪ Sτ su
h that M

{tp}
−→SI(N) M1 (su
h an M1 exists by 
onstru
tion ofSI(N)). Note that p /∈ M1. SI(N) is divergen
e free by Lemma 4.2. So there exist

M2, M3, . . . , Mn ⊆ S ∪ Sτ su
h that M1
τ

−→ M2
τ

−→ M3
τ

−→ · · ·
τ

−→ Mn ∧ Mn X
τ

−→ forsome n ≥ 1. There is no v ∈ U ′ with p ∈ v◦ by 
onstru
tion of SI(N). Hen
e p /∈ Mi for
1 ≤ i ≤ n.If |•u| = 1 then p ∈ ◦u. Otherwise there exists pu ∈ Sτ with pu ∈ ◦u. In this 
ase also
pu /∈ Mi for 1 ≤ i ≤ n by Lemma 4.1 (i) and (iii) as pt ∈ Mi for all 1 ≤ i ≤ n.In both 
ases Mn X

{u}
−→SI(N). Hen
e <σ, {u}> ∈ F (SI(N)).Case 2, •u * M : Then •t ⊆ M . Thus ∃q ∈ •u \ •t and |•u| > 1. This 
ase pro
eeds as
ase 1 with the roles of t and u ex
hanged.�⇐�: We will show that if SI(N) 6≃F N then SI(N) has a rea
hable N. Let SI(N) = (S ∪

Sτ , O, U ′, F ′, M0). If F (SI(N)) 6= F (N) then F (SI(N))\F (N) 6= ∅ by Proposition 4.1.Let <σ, X> ∈ F (SI(N)) \ F (N). Then M0
σ

=⇒N by Lemma 4.5 and Lemma 4.4. Let
u ∈ X su
h that M0

σu
=⇒ (whi
h exists, otherwise <σ, X> ∈ F (N)). Let M1 ⊆ S ∪ Sτsu
h that M0

σ
=⇒SI(N) M1 X

{u}
−→ ∧M1 X

τ
−→ (whi
h exists by Lemma 4.2).If |•u| = 1, let {p} = •u and we have p /∈ M1 (otherwise M1

{u}
−→SI(N)). On the otherhand, M0

σu
=⇒N and thus, a

ording to Lemma 4.5 and Lemma 4.4, p ∈ τ←(M1). Then,by 
onstru
tion of τ←, there must exist some tp ∈ U ′ with p ∈ •t (whi
h removed thetoken from p). By the 
onstru
tion of SI(N) then t ∈ O and, sin
e |•t| > 1, also t 6= u.Otherwise |•u| > 1. Let p ∈ •u su
h that p /∈ M1 ∧ pu /∈ M1 (su
h p exists, otherwise

M1
τ

−→SI(N) or M1
{u}
−→SI(N)). As above M0

σu
=⇒N and p ∈ τ←(M1). Then by 
onstru
tionof τ←, either p ∈ M1, whi
h is not the 
ase, or there exists some pt ∈ M1 with t ∈ O∧p ∈ •t.But pu /∈ M1 and hen
e t 6= u.It follows in both 
ases that t, u ∈ O∧t 6= u∧•t∩•u ⊇ {p}∧|•t| > 1∧M ∈ [M0〉N∧•u ⊆ M .

�It turns out that our net 
lasses SA(B) and SA(L) are strongly related to the followingestablished ones [3℄.De�nition 4.5 Let N = (S, O, ∅, F, M0) be a net.(i) N is free 
hoi
e, N ∈ FC, i� ∀p, q ∈ S. p• ∩ q• 6= ∅ ⇒ |p•| = |q•| = 1.(ii) N is extended free 
hoi
e, N ∈ EFC, i� ∀p, q ∈ S. p• ∩ q• 6= ∅ ⇒ p• = q•.(iii) N is behaviourally free 
hoi
e, N ∈ BFC, i� ∀u, v ∈ O. •u ∩ •v 6= ∅ ⇒
(∀M1 ∈ [M0〉.

•u ⊆ M1 ⇔
•v ⊆ M1). 27
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hrony
a bFigure 4.2: N ∈ SA(B), N /∈ EFC, N /∈ FC

a bFigure 4.3: N ∈ EFC, N /∈ SA(L), N /∈ SA(B), N /∈ FC, N /∈ AA(H, B), N ∈
AA(M, B), N ∈ AA(H, L), N ∈ AA(V, B), N ∈ ESPL, N /∈ SPL, N ∈
TSPLThe 
lass of free 
hoi
e nets is stri
tly smaller than that of symmetri
ally asyn
hronousnets respe
ting bran
hing time equivalen
e.Proposition 4.3

FC ( SA(B)Proof �⊆�: We prove that if N has a rea
hable N it is not in FC. Let t, u ∈ Osu
h that •t ∩ •u 6= ∅ ∧ |•t| > 1. Let p ∈ •t ∩ •u and let q ∈ •t with p 6= q. Then
p, q ∈ S ∧ t ∈ p• ∩ q• ∧ |p•| ≥ 2. Hen
e N is not in FC.The inequality follows from the example in Figure 4.2, whi
h is not in FC and triviallyin SA(B) as no steps are possible. �The 
lass of free 
hoi
e nets is stri
tly smaller than the 
lass of extended free 
hoi
e nets.Proposition 4.4

FC ( EFCProof Follows from the de�nitions sin
e |p•| = |q•| = 1 ∧ p• ∩ q• 6= ∅ ⇒ p• = q• andthe 
ounterexample in Figure 4.3. [3℄ �The 
lass of symmetri
ally asyn
hronous nets respe
ting bran
hing time is stri
tly smallerthan the 
lass of symmetri
ally asyn
hronous nets respe
ting linear time.28



Proposition 4.5
SA(B) ( SA(L)Proof �⊆�:We show that N /∈ SA(L) ⇒ N /∈ SA(B).Let N = (S, O, ∅, F, M0) be a net and N /∈ SA(L). From Lemma 4.7 we already knowthat MVP(N) ⊆ MVP(SI(N)). Hen
e let f : (Sf ∪Of ∪Uf ) → (S ∪O∪U ′) be a maximalpro
ess of SI(N) = (S ∪ Sτ , O, U ′, F ′, M0) with V P (f) ∈ MVP(SI(N)) \MVP(N) basedupon an o

urren
e net Nf = (Sf , Of , Uf , Ff , M0f).Using f , we will 
onstru
t a failure of pair of SI(N) whi
h is not a failure pair of N .Consider the fun
tion g := f ∩ ((Sf ∪ Of) × (S ∪ O)) and the o

urren
e net de�ned by

Ng := (g←(S), g←(O), ∅, Fg, g
←(M0)), where

(x, y) ∈ Fg ⇔
(

(x, y) ∈ Ff ∨ ∃t ∈ Uf , s ∈ Sf , f(s) ∈ Sτ . {(x, t), (t, s), (s, y)} ⊆ Ff

) .We now show that g is a pro
ess of N and V P (g) = V P (f).From the de�nition follows dire
tly that
g(g←(S)) ⊆ S

g(g←(O)) ⊆ O

g(∅) = ∅

g(g←(M0)) ⊆ M0 .Let p, q ∈ Sf su
h that (p, q) ∈ F ∗f . Then by 
onstru
tion of SI(N) there exists a sequen
e
r0, r2, . . . , rn with ∀0 ≤ i ≤ n. f(ri) ∈ S of pla
es su
h that
∀1 ≤ i ≤ n. (∃t ∈ Of . {(ri−1, t), (t, ri)} ⊆ Ff )∨ (4.1)

(∃t ∈ Of , u ∈ Uf , s ∈ Sf . f(s) ∈ Sτ ∧ {(ri−1, u), (u, s), (s, t), (t, ri)} ⊆ Ff)and r0 = p∧ rn = q. In other words, there are just these two ways in whi
h two �original�pla
es 
an be 
onne
ted in Nf .Let C be a sli
e of Ng and p, q ∈ C, p 6= q be two pla
es therein, su
h that g(p) = g(q).Then C is also a sli
e of Nf , sin
e f(C) ⊆ S and for every pair of pla
es in C Equation 4.1holds. Additionally sin
e C ⊆ Sf , f(p) = g(p) = g(q) = f(q) whi
h is a 
ontradi
tion.Hen
e g is inje
tive over sli
es. 29
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g respe
ts the post-pla
es of a transition t ∈ g←(O):

g(t•) = g({s ∈ g←(S) | (t, s) ∈ Fg})

= g({s ∈ g←(S) | (t, s) ∈ Ff})

= f({s ∈ g←(S) | (t, s) ∈ Ff})

= {s ∈ S | (f(t), s) ∈ F}

= {s ∈ S | (g(t), s) ∈ F} = g(t)•

g respe
ts the pre-pla
es of a transition t ∈ g←(O):If |•t| = 1 then
g(•t) = g({s ∈ g←(S) | (s, t) ∈ Fg})

= f({s ∈ g←(S) | (s, t) ∈ Ff})

= {s ∈ S | (s, f(t)) ∈ F})

= {s ∈ S | (s, g(t)) ∈ F}) = •g(t) .If |•t| > 1 then
g(•t) = g({s ∈ g←(S) | (s, t) ∈ Fg})

= f({s ∈ g←(S) | ∃u ∈ Uf , p ∈ Sf , f(p) ∈ Sτ . {(s, u), (u, p), (p, t)} ⊆ Ff})

= {s ∈ S | ∃u ∈ Uf , p ∈ Sf , f(p) ∈ Sτ . (s, f(u)) ∈ F ′, {(u, p), (p, t)} ⊆ Ff} .However from the 
onstru
tion of SI(N), we have that for ea
h pt ∈ Sτ exists exa
tly one
v ∈ U with (v, pt) ∈ F ′, namely v = tp. Sin
e f respe
ts the pre- and post
onditions oftransitions we 
an 
ontinue with

{s ∈ S | ∃u ∈ Uf , p ∈ Sf , f(p) ∈ Sτ . (s, f(u)) ∈ F ′, {(u, p), (p, t)} ⊆ Ff}

= {s ∈ S | ∃u ∈ U, p ∈ Sf , f(p) ∈ Sτ . {(s, u), (u, f(p))} ⊆ F ′, (p, t) ∈ Ff}

= {s ∈ S | ∃u ∈ U, p ∈ Sτ . {(s, u), (u, p), (p, g(t))} ⊆ F ′}

= {s ∈ S | (s, g(t)) ∈ F} = •g(t) .That V P (g) = V P (f) follows from the de�nition of Fg and Equation 4.1.Thus we have that g is a pro
ess of N and V P (g) = V P (f). But per assumption
V P (f) /∈ MVP(N) so g must not be maximal.Finally we use this property to derive the desired failure pair.Let t ∈ O su
h that •t ⊆ N◦g . Su
h a transitions exists, otherwise g would be maximal.A linearisation of V P (g) respe
ting the partial order leads to a tra
e σ. Additionally
V P (g) = V P (f), thus a linearisation of f will result in σ, too. But then ∃M1. M0

σ
=⇒SI(N)

M1 ∧ M1 X
τ

−→SI(N) ∧M1 X

{t}
−→SI(N) and M0

σ
=⇒N N◦g

{t}
−→N . There from we 
an 
on
ludethat <σ, {t}> ∈ F (SI(N)) \ F (N) and N /∈ SA(B).30



The inequality follows from the 
ounterexample in Figure 4.4, the symmetri
ally asyn-
hronous implementation of whi
h has the additional failure <x, {a}> . �The 
lass of extended free 
hoi
e nets and the 
lass of symmetri
ally asyn
hronous netsrespe
ting bran
hing time equivalen
e are in
omparable.Proposition 4.6
EFC * SA(B) ∧ SA(B) * EFCProof The proposition follows from the 
ounterexamples in Figure 4.2 and Figure 4.3.The latter ones symmetri
ally asyn
hronous implementation has the empty pomset as anadditional maximal visible pomset and is hen
e neither in SA(L) nor in SA(B). �The 
lass of extended free 
hoi
e nets and the 
lass of symmetri
ally asyn
hronous netsrespe
ting linear time equivalen
e are in
omparable.Proposition 4.7
EFC * SA(L) ∧ SA(L) * EFCProof Again from the 
ounterexamples in Figure 4.2 and Figure 4.3. �The 
lass of extended free 
hoi
e nets is stri
tly smaller than the 
lass of behaviourallyfree 
hoi
e nets.Proposition 4.8
EFC ( BFCProof We prove N /∈ BFC ⇒ N /∈ EFC. Let N = (S, O, ∅, F, M0) be a net. Let

u, v ∈ O with •u ∩ •v 6= ∅. Let X := •u ∩ •v. Let M1 ∈ [M0〉 with ∃M2. M1[{u}〉M2 and
∄M3. M1[{v}〉M3. Then there is some p ∈ •v, p /∈ M1, p /∈ •u. However X is not emptyand therefore ∃q ∈ X. u ∈ q• ∧ v ∈ q•. But then q• ∩ p• ⊇ {u} 6= ∅ and p• 6= q• andtherefore N /∈ EFC. The inequality follows from Figure 4.5. [3℄ �The 
lass of behaviourally free 
hoi
e nets and the 
lass of symmetri
ally asyn
hronousnets respe
ting linear time equivalen
e are in
omparable.Proposition 4.9

BFC * SA(L) ∧ SA(L) * BFC 31
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x y

a bFigure 4.4: N ∈ SA(L), N /∈ BFC, N /∈ SA(B)

p q

a b cFigure 4.5: N ∈ BFC, N /∈ SA(L), N /∈ EFCProof The proposition follows from the 
ounterexamples in Figure 4.4 and Figure 4.5.The latter ones symmetri
ally asyn
hronous implementation has an additional maximalpro
ess in whi
h bp �red on
e and c �res in�nitely often. �The 
lass of symmetri
ally asyn
hronous nets respe
ting bran
hing time equivalen
e isstri
tly smaller than the 
lass of behaviourally free 
hoi
e nets.Proposition 4.10
SA(B) ( BFCProof �⊆�: We show that N /∈ BFC ⇒ N /∈ SA(B).Let N = (S, O, ∅, F, M0) be a net with N /∈ BFC and let SI(N) = (S, O, U ′, F ′, M0).Let M1 ∈ [M0〉, u ∈ O, v ∈ O, s ∈ S su
h that s ∈ •v ∩ •u ∧ •u ⊆ M1 ∧

•v * M1 (theseexist sin
e N /∈ BFC).Then there exists a tra
e σ su
h that M0
σ

=⇒N M1. Together with •u ⊆ M1 it followsthat <σ, {u}> /∈ F (N).Using Lemma 4.4, M0
σ

=⇒SI(N) M1. Sin
e s ∈ •u ⊆ M1 but •v * M1 there exists p ∈ •vwith p 6= s. Then by 
onstru
tion of SI(N) there exists a transition vs ∈ U ′ (with s ∈ •vs,
s /∈ vs

•). Thereby ∃M2. M1
{vs}
−→ M2 with s /∈ M2. Furthermore ∀M3, M2

τ
−→

∗
M3. s /∈ M3due to the 
onstru
tion of SI(N). Sin
e additionally only �nitely many unobservabletransitions are possible, <σ, {u}> ∈ F (SI(N)).32
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Figure 4.6: Overview of the symmetri
ally asyn
hronous net 
lassesThe inequality follows from the 
ounterexample in Figure 4.5, the symmetri
ally asyn-
hronous implementation of whi
h has the additional failure <ε, {a}> . �The 
lass of fully symmetri
ally asyn
hronous nets respe
ting bran
hing time is stri
tlysmaller than the 
lass of symmetri
ally asyn
hronous nets respe
ting bran
hing time.Proposition 4.11FSA(B) ( SA(B)Proof If a net has no partially rea
hable 
on�i
t it also has no partially rea
hable N.The inequality follows from the example in �gure Figure 3.1. �We now try to translate our results within Figure 4.6 into intuitive statements aboutthe general nature of asyn
hrony and syn
hrony and the impli
ations to the behavioursimplementable in an asyn
hronous system.Let's start at the top of the diagram, i.e. at FC. Free 
hoi
e nets are 
hara
terizedstru
turally, enfor
ing that for every pla
e, a token therein 
an 
hoose freely (i.e. withoutinquiring about the existen
e of tokens in any other pla
es) whi
h outgoing ar
 to take.This property makes it possible to implement the system asyn
hronously. In parti
ular,the 
omponent whi
h holds the information represented by a token 
an 
hoose arbitrarilywhen and into whi
h of multiple asyn
hronous output 
hannels to forward said informa-tion, without further knowledge about the rest of the system. As this de
ision is solely inthe dis
retion of the sending 
omponent and not based upon any knowledge of the restof the system, no syn
hronization with other 
omponents is ne
essary.The di�eren
e between SA(B) and FC is that in SA(B) the quanti�
ation over the pla
esis dropped, and the 
ondition 
omes out more straightforward as: Every token 
an 
hoosefreely whi
h outgoing ar
 to follow. Thus, SA(B) allows for non-free-
hoi
e stru
tures aslong as these never re
eive any tokens. 33



4 Symmetri
 Asyn
hronyThis also explains why BFC in
ludes SA(B). Sin
e SA(B) guarantees that problemati
stru
tures never re
eive any tokens, all transitions 
ontained in su
h stru
tures are alwaysenabled together (a
tually they are never enabled).However SA(L) is not 
ontained in BFC as it additionally allows �temporary� deadlo
kswhi
h are guaranteed to 
ontinue after some further visible behaviour. These kind of laterto be resolved deadlo
ks are forbidden both in bran
hing time semanti
s and behaviourallyfree 
hoi
e nets.The in
omparability between the left and the right side of the diagram stems from the
on
eptual allowan
e of slight transformations of the net before evaluating whether it isfree 
hoi
e or not. Spe
i�
ally in the 
ase of the net in Figure 4.3, a τ transition 
an�rst be introdu
ed, whi
h 
olle
ts both tokens and then produ
es marks a single post-pla
e from whi
h the two original transitions get the token. Thus the 
hoi
e betweenthe two transitions is 
entralized in the newly introdu
ed pla
e and thus free again. Wedon't allow any insertion of �helping� τ transitions, as it seems un
lear to us how mu
h
omputing power should be allowed in possibly larger networks of su
h transitions. Thisbe
omes espe
ially problemati
 if these networks somehow tra
k part of the global statusof the net inside themselves and thus make quite informed de
isions about what outgoingtransition to enable.A similar di�eren
e exists between our results and those obtained in [10℄ by Hopkins.While we enfor
e a 
ertain distributed implementation of the original net, Hopkins allowsany implementation whi
h manages to exhibit the 
orre
t visible behaviour. Again, theimplementation might be quite elaborate and make informed de
isions based upon globalknowledge of the net. While su
h an implementation may be a sensible 
hoi
e in some
ases, it will most likely not be 
ompositional. Sin
e he allows far more transformationsthan we do and uses interleaving semanti
s, his net 
lasses in
lude both BFC and SA(L).

34



5 Asymmetri
 Asyn
hronyAs seen in the previous se
tion, the 
lass of symmetri
ally asyn
hronous nets is quitesmall, and pre
ludes the implementation of many real-world behaviours, like waiting forone of multiple input to be
ome readable, a Petri net representation of whi
h will alwaysin
lude non free-
hoi
e stru
tures.Therefore we propose a less stri
t de�nition of asyn
hrony su
h that a
tions may dependsyn
hronously on a single predetermined 
ondition. In a hardware implementation thepla
es whi
h earlier 
ould always forward a token into some invisible transitions must nowwait until they re
eive an expli
it token removal signal from their post-transitions.To this end we introdu
e a stati
 priority over the prepla
es of ea
h transition. Everytransition �rst removes the token from the most prioritised prepla
e and then 
ontinuesalong de
reasing priority. To formalize this behaviour in a Petri net we insert an invisibletransition for ea
h in
oming ar
 of every transition. These invisible transitions are for
edto exe
ute in sequen
e by newly introdu
ed bu�er pla
es between them. Finally at oneposition in this 
hain, the original visible transition is inserted.An example of this transformation is given in Figure 5.1.De�nition 5.1 Let N = (S, O, ∅, F, M0) be a net.Let g ⊂ (S × O) × (S × O) be a priority on F ∩ (S × O) su
h that for ea
h t ∈ O
g ∩ (•t × {t}) is a total order ≤t

g over •t × {t}.We write mint
g and mint

g for the pla
e 
ontained in its minimal and maximal elementrespe
tively and (s + 1)t
g for the next pla
e greater than s out of •t a

ording to g.We de�ne a set of invisible transitions as X := {ts | t ∈ O, s ∈ •t}.Let h : X → X ∪O be an inje
tive fun
tion for whi
h ∀ts ∈ X. h(ts) 6= ts ⇒ h(ts) = tand O ⊆ h−1(X).The asymmetri
ally asyn
hronous implementation with respe
t to g and h of N isde�ned as AIg,h := (S ∪ Sτ , O, U ′, F ′, M0) with

Sτ := {st | t ∈ O, s ∈ •t, s 6= mint
g} ,

U ′ := h(X) \ O and
F ′ := {(s, h(ts)) | t ∈ O, s ∈ •t} ∪

{(pt, h(ts)) | t ∈ O, p = (s + 1)t
g, s ∈ •t, s 6= mint

g} ∪

{(h(ts), st) | t ∈ O, s ∈ •t, s 6= mint
g} ∪

{(h(ts), p) | t ∈ O, s = mint
g, p ∈ t•} . 35
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p q s

a b

⇒

p q s

τ

a b

τFigure 5.1: Transformation to asymmetri
 asyn
hrony, g su
h that s <b
g p <b

g q and hsu
h that h(ap) = a, h(bp) = b, h(bq) = bq, h(bs) = bsNaturally we want the implementation to behave similar to the original net. Contraryto the earlier results and due to the 
hoi
e of g and h however, it is now possible to
reate implementations whi
h have additional tra
es, as it is done in Figure 5.6 by theimplementation sket
hed.Those problems 
an be 
ir
umvented if h is restri
ted su
h that h(ts) = t ⇒ s = mint
g.Due to time 
onstraints we will 
onsider that restri
tion to be in pla
e for the mostremaining parts and write AIg(N) instead of AIg,h(N) where it is the 
ase. Additionallywe leave the linear time 
ase as 
onje
tures.We now pro
eed parallel to the earlier se
tions, by removing all tokens on Sτ in a markingof the implementation. This time however multiple silent transitions need to be undonein sequen
e.De�nition 5.2 Let N = (S, O, ∅, F, M0) be a net and AIg(N) = (S∪Sτ , O, U ′, F ′, M0).Let τ⇐ : P(S ∪ Sτ ) → P(S) be the fun
tion de�ned by

τ⇐(X) := (X ∩ S) ∪
{

s
∣

∣

∣∃t ∈ O. s ∈ •t ∧ ∃pt ∈ X ∩ Sτ . (p, t) ≤t
g (s, t)

} .Given a marking of the implementation, τ⇐ will produ
e a marking whi
h must have beenrea
hable before the 
urrent situation 
ould ever have arisen.Note that the appli
ation of τ⇐ is only meaningful for markings where no two elementsof Sτ have originated from the same transition. However implementations of 
onta
t freenets produ
e only markings whi
h ful�l this 
ondition, as we will show below.We �rst need to give the ne
essary invariant predi
ate and distan
e fun
tion.De�nition 5.3 Let N = (S, O, ∅, F, M0) be a net and AI(N) = (S ∪Sτ , O, U ′, F ′, M0).The predi
ate γ ⊆ P(S ∪ Sτ) is de�ned as γ(M) :⇔ τ⇐(M) ∈ [M0〉N ∧ ∀p, q ∈ M.
p 6= q ⇒ τ⇐({p}) ∩ τ⇐({q}) = ∅. The fun
tion f : P(S ∪ Sτ ) → N is de�ned as
f(M) := |M ∩ S|.We 
an now prove basi
 properties similar (but slightly weaker) to those in Lemma 3.1and Lemma 4.1.36



Lemma 5.1 Let N = (S, O, ∅, F, M0) be a net, AIg(N) = S ∪ Sτ , O, U ′, F ′, M0) and
M ⊆ S ∪ Sτ .(i) γ(M0)(ii) γ(M) ⇒ (∃M ′ ⊆ S ∪ Sτ . M

τ
−→AIg(N) M ′ ⇒ f(M) > 0)(iii) M [G)AIg(N)M

′ ∧ γ(M) ⇒ ∀t ∈ G. (M \ ◦t) ∩ t◦ = ∅ ∧ τ⇐(M)
G∩O
−→N τ⇐(M ′) ∧

γ(M ′)(iv) M
τ

−→AIg(N) M ′ ⇒ f(M) > f(M ′) ∧ τ⇐(M) = τ⇐(M ′)(v) M [G〉NM ′ ⇒ M
τ

−→
∗ G
−→

τ
−→

∗AIg(N) M ′

Proof(i): τ⇐(M0) = M0 whi
h is trivially rea
hable. Furthermore ∀s ∈ S. τ⇐(M0) = {s} andhen
e ∀s, p ∈ M0. s, p ∈ S ∧ s 6= p ⇒ τ⇐({s}) ∩ τ⇐({p}) = {s} ∩ {p} = ∅.(ii): Assume γ(M) and there exists an M ′ ⊆ S ∪ Sτ su
h that M [ts〉AIg(N)M
′ with some

t ∈ O, s ∈ S. By 
onstru
tion of AIg(N) then ◦ts ∩ S 6= ∅. Hen
e f(M) > 0.(iii): We �rst prove that ∀t ∈ G. (M \ ◦t) ∩ t◦ = ∅ and γ(M ′).Consider any u ∈ G ∩ U ′. Let t ∈ O, s ∈ S su
h that ts = u. Then s ∈ ◦u ∧ s ∈ M and
u◦ = {st}. Then τ⇐({s}) ∩ τ⇐({st}) ⊇ {s}. Sin
e γ(M) and s ∈ M then st /∈ M . Hen
e
(M \ ◦u) ∩ u◦ = ∅.Consider any u ∈ G ∩ O. Let s be the single element of ◦u ∩ S. By 
onstru
tion ofAIg(N) and τ⇐, •u = τ⇐(◦u). Sin
e by γ(M) it follows that τ⇐(M) ∈ [M0〉N and Nis 
onta
t free, we know that (τ⇐(M) \ •u) ∩ u• = ∅. Additionally u◦ = u• and hen
e
(τ⇐(M) \ •u) ∩ u◦ = ∅. Note that ◦u ∩ S = {s}. Sin
e γ(M) ∧ ◦u ⊆ M it follows that
M ∩ •u = {s}. Thereby (M \ ◦u) ∩ u◦ = ∅.We now want to prove that τ⇐(M)

G∩O
−→N τ⇐(M ′).

M ′ = (M \ {s | s ∈ ◦t, t ∈ G}) ∪ {s | s ∈ t◦, t ∈ G}

= (M \ ({s | ts ∈ G ∩ U ′} ∪ {qt | ts ∈ G ∩ U ′, |◦ts| > 1, q = (s + 1)t
g} ∪

{mint
g | t ∈ G ∩ O} ∪ {qt | t ∈ G ∩ O, |◦t| > 1, q = (mint

g + 1)t
g})) ∪

{st | ts ∈ G ∩ U ′} ∪

{p | t ∈ G ∩ O, p ∈ t•} 37
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hronyTherefore
τ⇐(M ′) = τ⇐((M \ ({s | ts ∈ G ∩ U ′} ∪ {qt | ts ∈ G ∩ U ′, |◦ts| > 1, q = (s + 1)t

g} ∪

{mint
g | t ∈ G ∩ O} ∪ {qt | t ∈ G ∩ O, |◦t| > 1, q = (mint

g + 1)t
g})) ∪

{st | ts ∈ G ∩ U ′} ∪

{p | t ∈ G ∩ O, p ∈ t•})

= τ⇐((M \ ({s | ts ∈ G ∩ U ′} ∪ {qt | ts ∈ G ∩ U ′, |◦ts| > 1, q = (s + 1)t
g} ∪

{mint
g | t ∈ G ∩ O} ∪ {qt | t ∈ G ∩ O, |◦t| > 1, q = (mint

g + 1)t
g})) ∪

{st | ts ∈ G ∩ U ′}) ∪

{p | t ∈ G ∩ O, p ∈ t•}

= τ⇐((M \ ({s | ts ∈ G ∩ U ′} ∪ {qt | ts ∈ G ∩ U ′, |◦ts| > 1, q = (s + 1)t
g}

{mint
g | t ∈ G ∩ O} ∪ {qt | t ∈ G ∩ O, |◦t| > 1, q = (mint

g + 1)t
g}))) ∪

{s | tp ∈ G ∩ U ′, s ∈ •t ∧ (p, t) ≤t
g (s, t)} ∪

{p | t ∈ G ∩ O, p ∈ t•} .Sin
e ∀t ∈ G ∩ O. mint
g ∈ M ∧ (|◦t| > 1 ⇒ ∃q ∈ •t. q = (mint

g + 1)t
g ∧ qt ∈ M) by γ(M)follows that ∄p ∈ M∃t ∈ G ∩ O. τ⇐({p}) ∩ τ⇐(◦t) 6= ∅ ∧ p 6= mint

g ∧ (|◦t| = 1 ∨ ∃q ∈
•t. q = (mint

g + 1)t
g ∧ p 6= tq). Hen
e

τ⇐(M ′) = (τ⇐(M \ ({s | ts ∈ G ∩ U ′} ∪ {qt | ts ∈ G ∩ U ′, |◦ts| > 1, q = (s + 1)t
g}))\

({mint
g | t ∈ G ∩ O} ∪ {q | t ∈ G ∩ O, |◦t| > 1, q ∈ •t, q 6= mint

g})) ∪

{s | tp ∈ G ∩ U ′, s ∈ •t ∧ (p, t) ≤t
g (s, t)} ∪

{p | t ∈ G ∩ O, p ∈ t•}

= (τ⇐(M \ ({s | ts ∈ G ∩ U ′} ∪ {qt | ts ∈ G ∩ U ′, |◦ts| > 1, q = (s + 1)t
g}))\

{q | t ∈ G ∩ O, q ∈ •t}) ∪

{s | tp ∈ G ∩ U ′, s ∈ •t ∧ (p, t) ≤t
g (s, t)} ∪

{p | t ∈ G ∩ O, p ∈ t•} .Sin
e ts ∈ G ∩ U ′ ⇒ (s, t) ≤t
g (s, t) and also ts ∈ G ∩ U ′ ∧ |◦ts| > 1 ∧ q = (s + 1)t

g ⇒
(s, t) ≤t

g (q, t) it follows that
τ⇐(M ′) = (τ⇐(M)\

{q | t ∈ G ∩ O, q ∈ •t}) ∪

{s | tp ∈ G ∩ U ′, s ∈ •t ∧ (p, t) ≤t
g (s, t)} ∪

{p | t ∈ G ∩ O, p ∈ t•} .By 
onstru
tion of AIg(N) and τ⇐ follows that tp ∈ G∩U ′ ⇒ {s|s ∈ •t∧(p, t) ≤t
g (s, t)} ⊆

τ⇐(M). Hen
e
τ⇐(M ′) = (τ⇐(M) \ {p | t ∈ G ∩ O, p ∈ •t}) ∪ {p | t ∈ G ∩ O, p ∈ t•} .38



Sin
e N is 
onta
t free there 
an be no 
on�i
t on post-pla
es of any t ∈ G∩O. By γ(M)follows that ∀t, u ∈ G ∩ O. •t ∩ •u = ∅. Hen
e τ⇐(M)
G∩O
−→N τ⇐(M ′).We still need to prove that ∀p, q ∈ M ′. p 6= q ⇒ τ⇐({p}) ∩ τ⇐({q}) = ∅. Assume the
ontrary, i.e. there are p, q ∈ M ′ with τ⇐({p}) ∩ τ⇐({q}) 6= ∅. Sin
e γ(M) at least oneof p and q � say p � must not be present in M .Assume p ∈ Sτ . Then there exists s ∈ S, t ∈ O su
h that st = p ∧ ts ∈ G. If |◦ts| > 1let r = (s + 1)t

g. Otherwise let r be a new and unused element (this avoids trivial 
asedi�erentiations).From γ(M) and ◦ts ⊆ M follows p′ ∈ M ∧ τ⇐({p′}) ∩ τ⇐(◦ts) 6= ∅ ⇒ p′ = s ∨ p′ = rt.Additionally ts ∈ G and as s, rt /∈ ts
◦ then s, rt /∈ M ′. Hen
e any possibly 
on�i
ting qmust have been 
reated in the same step by some 
on
urrent transition.Consider a v ∈ G ∩ U ′ with v 6= ts ∧ τ⇐(v◦) ∩ τ⇐(ts

◦) 6= ∅. By 
onstru
tion of AIg(N)and τ⇐ then τ⇐(◦v) ∩ τ⇐(◦ts) 6= ∅. But then ◦v ⊆ M violates γ(M).Consider a v ∈ G ∩ O with τ⇐(v◦) ∩ τ⇐(ts
◦) 6= ∅. Let p′ ∈ τ⇐(v◦) ∩ τ⇐(ts

◦). Then also
p′ ∈ v•. By 
onstru
tion of AIg(N) follows that τ⇐(ts

◦) = τ⇐(◦ts). It hen
e follows that
p′ ∈ τ⇐(◦ts) ⊆ τ⇐(M).By τ⇐(M)

G∩O
−→ τ⇐(M ′) it follows that •v ⊆ τ⇐(M). But τ⇐(M) is rea
hable in N andby 
onta
t freeness of N follows that (τ⇐(M) \ •v) ∩ v• = ∅. Thereby p′ ∈ •v.If p′ = s either s ∈ ◦v and ts and v 
ould not �re in the same step, or ∃p′′ ∈ ◦v. p′′ 6= s ∧

s ∈ τ⇐({p′′}) ∩ τ⇐({s}) thereby violating γ(M)Otherwise p′ 6= s. But then ∃p′′ ∈ ◦v. p′′ 6= rt∧p′ ∈ τ⇐({p′′})∩τ⇐({rt}) thereby violating
γ(M).Assume p ∈ S. Then there exists t ∈ G ∩ O with p ∈ t◦ = t•. However γ(M) ⇒

M ∈ [M0〉N and τ⇐(M)
G∩O
−→N τ⇐(M ′) ⇒ •t ⊆ τ⇐(M). Sin
e N is 
onta
t free, then

(t• \ •t)∩τ⇐(M ′) = ∅. Therefore from τ⇐({q})∩τ⇐({p}) = {p}∧p ∈ t•∧q ∈ M ′ follows
p ∈ •t. Sin
e p was assumed not be in in M and ◦t ⊆ M it follows that p /∈ ◦t.If q ∈ S then q = p thereby 
ontradi
ting the assumptions. Hen
e q ∈ Sτ and sin
e
q ∈ M ′ and t◦ ⊆ S we know that q /∈ t◦ and q was not produ
ed by t.Now there exists the possibility that q was produ
ed by some other 
on
urrent transition.Assume �rst that this is not the 
ase and q ∈ M . Then ◦t ⊆ M ∧ q ∈ M ∧ q /∈ ◦t ∧
p ∈ τ⇐({q}) ∩ τ⇐(◦t) thereby violating γ(M).Assume now that there exists some v ∈ G with q ∈ v◦. Sin
e q /∈ S we know that
v ∈ U ′. By 
onstru
tion of AIg(N) then there exists some q′ ∈ ◦v with p ∈ τ⇐({q′}).Then ◦t ⊆ M ∧ q′ ∈ M ∧ q′ /∈ ◦t ∧ p ∈ τ⇐({q′}) ∩ τ⇐(◦t) thereby violating γ(M).(iv): Let ts ∈ U ′ su
h that M [{ts}〉AIg(N)M

′. Then ◦ts ∩ S = {s}. As ts
◦ ∩ S = ∅ noelement of ts

◦ 
ontributes to f(M ′) and hen
e f(M ′) = f(M) − 1. 39



5 Asymmetri
 Asyn
hronyIf ◦ts ⊆ S then τ⇐(M ′) = τ⇐((M \◦ts)∪ts
◦) = τ⇐((M \{s})∪{st}) = τ⇐(M). Otherwiselet p ∈ S su
h that pt ∈

◦ts.Then τ⇐(M ′) = τ⇐((M \ ◦ts) ∪ ts
◦) = τ⇐((M \ {s, pt}) ∪ {st}) = τ⇐(M).(v): Assume M [G〉NM ′. Order the elements of G arbitrarily su
h that G = {t1, t2, . . . , tn}.We now 
onstru
t a sequen
e M1, M2, . . . , Mn of markings su
h that ◦t1 ⊆ M1,

◦t1 ∪
◦t2 ⊆

M2, . . . ,
◦t1 ∪ ◦t2 ∪ · · · ∪ ◦tn ⊆ Mn. To simplify notation, let M0 := M . To get from

Mi−1 to Mi with 1 ≤ i ≤ n 
onsider the sequen
e of pla
es p1, p2, . . . , pm where every
pj = (pj+1+1)t

g and pm = mint
g. Then Mi−1[{tp1

}〉AIg(N)[{tp2
}〉AIg(N) · · · [{tpm−1

}〉AIg(N)Mi.In this fashion we arrive at Mn. Then Mn[G〉AIgM ′′. By 
onstru
tion of AIg(N) followsthat M ′′ = M ′. �We get the same set of 
orollaries as before.Lemma 5.2 Let N be a net.AIg(N) is divergen
e free.Proof By Lemma 5.1 (i), (ii), (iii) and (iv). �Lemma 5.3 Let N = (S, O, ∅, F, M0) be a net.If N is 
onta
t free, so is AIg(N).Proof By Lemma 5.1, (i) and (iii). �Lemma 5.4 Let N = (S, O, ∅, F, M0) be a net, AIg(N) = (S ∪ Sτ , O, U ′, F ′, M0) and
M1 ∈ [M0〉N , M2 ⊆ S.(i) (M1

G
−→N M2) ⇔ (M1

τ
−→

∗AIg(N)
G

−→AIg(N)
τ

−→
∗AIg(N) M2)(ii) (M1

σ
=⇒N M2) ⇔ (M1

σ
=⇒AIg(N) M2)Proof Completely parallel to Lemma 3.4 using Lemma 5.1 instead of Lemma 3.1. �Lemma 5.5 Let N = (S, O, ∅, F, M0) be a net and let AIg(N) = (S∪Sτ , O, U ′, F ′, M0)be an asymmetri
ally asyn
hronous implementation of N .Let M ⊆ S ∪ Sτ , σ ∈ O∗ su
h that M0

σ
=⇒AIg(N) M and let MS := τ⇐(M).Then M0

σ
=⇒AIg(N) MS and ∄M ′

S ⊆ S. M ′
S 6= MS ∧ M0

σ
=⇒AIg(N) M ′

S.Proof Completely parallel to Lemma 3.5 using Lemma 5.1 instead of Lemma 3.1. �40



Proposition 5.1 Let N = (S, O, ∅, F, M0) be a net and let g and h be fun
tions su
hthat AIg(N) = (S ∪ Sτ , O, U ′, F ′, M0) is an asymmetri
 asyn
hronous implementation of
N and h(ts) = t ⇒ s = mint

g.Then F (N) ⊆ F (AIg(N)).Proof Completely analogous to Proposition 3.1 using Lemma 5.1 instead of Lemma 3.1.
�As before, we are interested in the relationship between nets and their possible implemen-tations. The de�nition of asymmetri
 asyn
hrony however allows di�erent implementa-tions for the same net. We de�ne a net to be asymmetri
ally asyn
hronous if any of thepossible implementations simulates the net su�
iently.De�nition 5.4The 
lass of asymmetri
ally asyn
hronous nets respe
ting bran
hing time equivalen
e isde�ned as AA(M, B) := {N | ∃g, h. AIg,h(N) ≃F N}. Similarly the 
lass of asymmet-ri
ally asyn
hronous nets respe
ting linear time equivalen
e is de�ned as AA(M, L) :=

{N | ∃g, h. AIg,h(N) ≃CPT N}.These 
lasses 
an be subdivided further by adding 
onstraints to the possible fun
tions h.De�nition 5.5The 
lass of front asymmetri
ally asyn
hronous nets respe
ting bran
hing time equiv-alen
e is de�ned as AA(V, B) := {N | ∃g, h. h(ts) = t ⇒ s = mint
g,AIg,h(N) ≃F N}.The 
lass of front asymmetri
ally asyn
hronous nets respe
ting linear time equivalen
eis de�ned as AA(V, L) := {N | ∃g, h. h(ts) = t ⇒ s = mint

g,AIg,h(N) ≃CPT N}.De�nition 5.6The 
lass of tail asymmetri
ally asyn
hronous nets respe
ting bran
hing time equiva-len
e is de�ned as AA(H, B) := {N | ∃g, h. h(ts) = t ⇒ s = mint
g,AIg,h(N) ≃F N}.The 
lass of tail asymmetri
ally asyn
hronous nets respe
ting linear time equivalen
eis de�ned as AA(H, L) := {N | ∃g, h. h(ts) = t ⇒ s = mint

g,AIg,h(N) ≃CPT N}.We have 
hosen �V� and �H� from the German �vorne� and �hinten� as �F� for �front�would 
ollide unne
essarily with the �F� of the failure equivalen
e.We kindly remind that most of the results in this se
tion only hold for AA(H, B), as werestri
ted ourselves to it.It would be ni
e to obtain a semi-stru
tural 
hara
terization of AA(H, B) in the spirit ofTheorem 3.1. Unfortunately we did not �nd exa
t bounds, but obtained stru
tural upperand lower bounds for that net 
lass. 41



5 Asymmetri
 Asyn
hronyDe�nition 5.7A net N = (S, O, ∅, F, M0) has a left and right rea
hable M i� ∃t, u, v ∈ O∃p ∈
•t ∩ •u∃q ∈ •u ∩ •v. t 6= u ∧ u 6= v ∧ ∃M1, M2 ∈ [M0〉.

•t ∪ •u ⊆ M1 ∧
•v ∪ •u ⊆ M2A net N = (S, O, ∅, F, M0) has a left and right border rea
hable M i� ∃t, u, v ∈ O∃p ∈

•t ∩ •u∃q ∈ •u ∩ •v. t 6= u ∧ u 6= v ∧ ∃M1, M2 ∈ [M0〉.
•t ⊆ M1 ∧

•v ⊆ M2Theorem 5.1If a net N = (S, O, ∅, F, M0) is in AA(H, B) then N has no left and right rea
hableM.Proof Assume N has a left and right rea
hable M. Let t, u, v ∈ O and p, q ∈ S su
hthat p ∈ •t∩•u∧q ∈ •u∩•v∧t 6= u∧u 6= v∧∃M1, M2 ∈ [M0〉.
•t∪•u ⊆ M1∧

•v∪•u ⊆ M2.The problemati
 transition will be u. Either (p, u) >u
g (q, u) or (q, u) >u

g (p, u). Dueto symmetry we 
an assume the former without loss of generality. We know that thereexists some σ ∈ O∗ su
h that M0
σ

=⇒N M1 ∧
•t ⊆ M1. By Lemma 2.1 it follows that

∀<σ, X> ∈ F (N). t /∈ X.By Lemma 5.4 also M0
σ

=⇒AIg(N) M1. Let p1, p2, . . . , pn ∈ S su
h that pi−1 = (pi +1)u
g for

2 ≤ i ≤ n and pn = p.Sin
e •u ⊆ M1 then there exists some M ′
1 with

M1[{up1
}〉AIg(N)[{up2

}〉AIg(N) · · · [{upn
}〉AIg(N)M

′
1 .Then pu ∈ M ′

1. By Lemma 5.1 (i) and (iii) also γ(M ′
1).But then by Lemma 5.1 (ii) and (iii) there exists an M ′′

1 with M ′
1

τ
−→

∗AIg(N) M ′′
1 ∧

M ′′
1 X

τ
−→AIg(N) ∧γ(M ′′

1 ). From 
onstru
tion of AIg(N) follows pu ∈ M ′
1 ⇒ ∃s ∈ •u.

(s, u) ≤u
g (p, u)∧su ∈ M ′′

1 . By 
onstru
tion of AIg(N) we know that p ∈ τ⇐(◦t). Togetherwith γ(M ′′
1 ) follows ◦t * M ′′

1 .But then <σ, {t}> ∈ F (AIg(N)). By the earlier observation however <σ, {t}> /∈ F (N).Hen
e N is not in AA(H, B). �Theorem 5.2If a net N = (S, O, ∅, F, M0) has no left and right border rea
hable M then N is inAA(H, B).Proof Assume N has no left and right border rea
hable M.Then ∀u ∈ O. (p, q ∈ •u ∧ (∃t ∈ p•. t 6= u ∧ (∃M1 ∈ [M0〉N . •t ⊆ M1)) ∧ (∃v ∈ q•.
v 6= u ∧ (∃M2 ∈ [M0〉N . •v ⊆ M2))) ⇒ p = q. Hen
e for every u ∈ O there 
an only beone pla
e in •u where 
on�i
t 
ould o

ur.Now 
hoose g ⊆ (S × O) × (S × O) su
h that for all u ∈ O, mint

g is that single pla
e.42



t u v

x y

Figure 5.2: N /∈ AA(H, B), N has a left and right border rea
hable M, N has no left andright rea
hable MLet AIg(N) = (S ∪ Sτ , O, U ′, F ′, M0).We prove that F (N) = F (AIg(N)). From Proposition 5.1 we have F (N) ⊆ F (AIg(N)).Therefore 
onsider a failure <σ, X> ∈ F (AIg(N)). We need to show that <σ, X> ∈
F (N).There exists some M1 ⊆ S ∪Sτ with M0

σ
=⇒AIg(N) M1 ∧M1 X

τ
−→ ∧∀t ∈ X. M1 X

{t}
−→. Thenby Lemma 5.5 M0

σ
=⇒AIg(N) τ⇐(M1) and by Lemma 5.4 also M0

σ
=⇒N τ⇐(M1).Now take any t ∈ X. Assume τ⇐(M1)

{t}
−→N . Then ◦t * M1 but •t ⊆ τ⇐(M1).By 
onstru
tion of τ⇐ then ∀s ∈ •t. s ∈ M1 ∨ ∃u ∈ O, p ∈ S. s ∈ τ⇐({up}) ∧ up ∈ M1.Sin
e M1 X

{t}
−→AIg(N) ∧M1 X

τ
−→AIg(N) there exists at least one s ∈ •t su
h that s 6= M1 andthere exist u ∈ O and p ∈ S with s ∈ τ⇐({up}) and u 6= t.But then s ∈ •u∧ t ∈ s• ∧ t 6= u∧ τ⇐(M1) ∈ [M0〉N ∧ •t ⊆ τ⇐(M1). Sin
e s ∈ τ⇐{up} by
onstru
tion of AIg(N) follows that s 6= minu

g . This however 
ontradi
ts our 
onstru
tionfor g given above. Hen
e τ⇐(M1) X

{t}
−→N .Applying this argument for all t ∈ X yields < σ, X > ∈ F (N) and thereby �nally

F (AIg(N)) ⊆ F (N). Hen
e N ∈ AA(H, B). �Indeed there are some nets in AA(H, B) whi
h have left and right border rea
hable Ms,but no left and right rea
hable M, see Figure 5.2.As before, the 
lasses de�ned in this se
tion are related to some known ones.De�nition 5.8 Let N = (S, O, ∅, F, M0) be a net.(i) N is simple in terms of transitions, N ∈ TSPL, i� ∀u, v ∈ O. (•u)•∩(•v)• 6= ∅ ⇒
•u ⊆ •v ∨ •v ⊆ •u.(ii) N is simple, N ∈ SPL, i� ∀p, q ∈ S. p• ∩ q• 6= ∅ ⇒ |p•| = 1 ∨ |q•| = 1. 43
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a bFigure 5.3: N ∈ SPL, N /∈ TSPL, N ∈ AA(H, B), N ∈ ESPL(iii) N is extended simple, N ∈ ESPL, i� ∀p, q ∈ S. p• ∩ q• 6= ∅ ⇒ p• ⊆ q• ∨ q• ⊆ p•.The 
lass of nets whi
h are simple in terms of transitions and simple nets are in
omparable.Proposition 5.2

TSPL * SPL ∧ SPL * TSPLProof The proposition follows from the 
ounterexamples in Figure 4.3 and Figure 5.3.
�The 
lass of nets whi
h are simple in terms of transitions is stri
tly smaller than the 
lassof extended simple nets.Proposition 5.3

TSPL ( ESPLProof Let N = (S, O, ∅, F, M0) be a net. We prove that N /∈ ESPL ⇒ N /∈ TSPL.Let N /∈ ESPL. Then there exist p, q ∈ S and t, u, v ∈ O with t ∈ p• ∩ q•, u ∈ p• \ q•and v ∈ q• \ p•.But then (•u)• ∩ (•v)• ⊇ {t}, yet {p} ∈ •u \ •v and {q} ∈ •v \ •u. Hen
e N /∈ TSPL.The inequality follows from the 
ounterexample in Figure 5.3. �The 
lass of tail asymmetri
ally asyn
hronous nets respe
ting bran
hing time is in
om-parable with the 
lass of nets whi
h are simple in terms of transitions.Proposition 5.4
AA(H, B) * TSPL ∧ TSPL * AA(H, B)Proof The proposition follows from the 
ounterexamples in Figure 5.3 and Figure 4.3.The tail asymmetri
ally asyn
hronous implementation of the latter will always have anew failure after the tra
e ε. If the left token is taken �rst either a or b will be disabled,but no visible a
tion o

urred yet. The same holds for the other side. �44



a b cFigure 5.4: N ∈ AA(H, B), N /∈ ESPLThe 
lass of simple nets is stri
tly smaller than the 
lass of extended simple nets.Proposition 5.5
SPL ( ESPLProof Let N = (S, O, ∅, F, M0) be a net and N ∈ SPL. If p• ∩ q• 6= ∅ then either

|p•| = 1, p• ∩ q• = p• and p• ⊆ q• or vi
e versa.The inequality follows from the 
ounterexample in Figure 4.3. �The 
lass of simple nets is stri
tly smaller than the 
lass of tail asymmetri
ally asyn-
hronous nets respe
ting bran
hing time equivalen
e.Proposition 5.6
SPL ( AA(H, B)Proof We prove that every M violates the 
onstraints of SPL.Assume N has a left and right rea
hable M. Let t, u, v ∈ O and let p, q ∈ S su
h that

p ∈ •t ∩ •u ∧ q ∈ •u ∩ •v.Then u ∈ p• ∩ q• and |p•| > 1 ∧ |q•| > 1. Hen
e N is not in SPL.Therefore if N is in SPL it has no M. By Theorem 5.2, N is then in AA(H, B).The inequality follows from the example in �gure Figure 5.4. �The 
lass of tail asymmetri
ally asyn
hronous nets respe
ting bran
hing time equivalen
eis in
omparable to the 
lass of extended simple nets.Proposition 5.7
AA(H, B) * ESPL ∧ ESPL * AA(H, B)Proof The proposition follows from the 
ounterexamples in Figure 4.3 and Figure 5.4.The missing tokens in the latter example are intended. As no a
tion is possible there willnot be any additional implementation failures. �45
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x y

aFigure 5.5: N /∈ AA(V, B), N /∈ AA(V, L), N ∈ FC, N ∈ AA(H, B)The 
lass of tail asymmetri
ally asyn
hronous nets respe
ting bran
hing time equivalen
eis stri
tly smaller than the 
lass of asymmetri
ally asyn
hronous nets. While the in
lusionis obviously trivial, the inequality is more interesting.Proposition 5.8
AA(H, B) ( AA(M, B)Proof Follows from the de�nitions and the 
ounterexample in Figure 4.3.Every tail asymmetri
ally asyn
hronous implementation of the net will have one additionalfailure, either <ε, {a}> or <ε, {b}> . �Typi
al nets whi
h are in AA(M, B) but not in AA(H, B) are those with redundant pla
eswhere it is important to make the 
hoi
e on the �rst pla
e taken and do it using a visibletransition, lest bran
hing time is violated. However there are less sinister uses of thefreedom given in the fun
tion h, see Figure 5.6 for an example.The following result is in
luded merely for sake of 
ompleteness, as it is both trivial andrather uninteresting, sin
e the 
lass of front asymmetri
ally asyn
hronous nets respe
t-ing bran
hing time seems far too small. At least, it's stri
tly in
luded in the 
lass ofasymmetri
ally asyn
hronous nets respe
ting bran
hing time.Proposition 5.9
AA(V, B) ( AA(M, B)Proof Follows from the de�nitions and the 
ounterexample in Figure 5.5. In the exam-ple, any front asymmetri
ally asyn
hronous implementation will have an additional tra
e,either xa or ya. �The same relation also holds within linear time semanti
s.
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Figure 5.6: N ∈ AA(M, L), N ∈ AA(M, B), N /∈ AA(H, L)Proposition 5.10
AA(V, L) ( AA(M, L)Proof Follows dire
tly from the de�nitions and the 
ounterexample in Figure 5.5. �However some stru
tures are implementable within front asymmetri
ally asyn
hronousnets respe
ting bran
hing time while not in the tail asymmetri
ally asyn
hronous variant.Proposition 5.11
AA(H, B) * AA(V, B) ∧ AA(V, B) * AA(H, B)Proof The proposition follows from the 
ounterexamples in Figure 4.3 and Figure 5.5.

�The 
lasses of tail asymmetri
ally asyn
hronous nets is stri
tly smaller than the 
lass ofasymmetri
ally asyn
hronous nets. This result 
ame quite as a surprise to us and reliesheavily upon the fa
t that we have 
hosen a behavioural equivalen
e instead of a notionof simulation whi
h also 
onsiders markings.Proposition 5.12
AA(H, L) ( AA(M, L)Proof AA(H, L) ⊆ AA(M, L) follows dire
tly from the de�nitions. 47



5 Asymmetri
 Asyn
hronyThe inequality follows from the example in �gure Figure 5.6. The dashed parts in thediagram are not ne
essary for the formal proof, but exist only to highlight the fa
t thatthere are su
h nets where b 
an be enabled. We prove that no tail asymmetri
ally asyn-
hronous implementation 
an be 
ompleted pomset tra
e equivalent to this net (withoutdashed parts).The original net has the 
ompleted tra
es zc, and xa. After z, a token resides on r and
b must not take that token away, sin
e c must stay enabled until �red. Therefore anyimplementation of b must �rst attempt to a
quire a token from q. Furthermore after x atoken resides on q but b must not �re. Sin
e the token from q must be taken before theone from r, the transition doing so must be invisible. However the tra
e x must not bemaximal but extendible to xa. Sin
e the token on q 
an be taken away at any time bythe invisible transition whi
h is part of the implementation of b, the exe
ution of a mustnot depend on the existen
e of a token on q. Hen
e a must �rst take the token from pand do so using the visible transition. �The implementation outlined in the proof of Proposition 5.12 will also work with thedashed parts in
luded, making the example slightly less 
ontrived. Nonetheless, the 
or-re
tness of the implementation depends 
ru
ially on the fa
t that no further a
tions getexe
uted after a, as the implementation of a is not guaranteed to run to 
ompletion andthe pla
e s might not be marked after the tra
e xa.This result 
an be interpreted in two ways. On the one hand, our behavioural approa
hseems to produ
e odd results, on the other hand, it identi�es spe
ial 
ases whi
h are stillimplementable by our methods, even though the general stru
ture of them is not.Those 
ases whi
h are only implementable by in AA(M, L) are rare however, and we 
on-je
ture that the 
lass of tail asymmetri
ally asyn
hronous nets is already stri
tly greaterthan the 
lass of extended simple nets.Conje
ture 5.1

ESPL ( AA(H, L)Proof (Sket
h) Let N = (S, O, ∅, F, M0) be a net and N ∈ ESPL.We 
hoose g su
h that ∀t ∈ O, p, q ∈ •t. p• ⊆ q• ⇒ p ≤t
g q.Let AIg(N) = (S∪Sτ , O, U ′, F ′, M0). One needs to show thatMVP(N) = MVP(AIg(N)).

�We also 
onje
ture that the 
lass of extended simple nets is stri
tly smaller than the
lass of asymmetri
ally asyn
hronous nets respe
ting bran
hing time. First we show ani
e property of extended simple nets whi
h 
an then be used to 
onstru
t the 
orre
timplementation.48
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p q s

a b cFigure 5.7: N ∈ AA(H, L), N /∈ AA(M, B)Lemma 5.6 Let N = (S, O, ∅, F, M0) be a net with N ∈ ESPL. Let # ⊆ O × O bethe relation de�ned as t#u :⇔ •t ∩ •u 6= ∅.Let t ∈ O. Let X := {u | t#∗u}. If |X| > 1 then ∃s ∈ S. X ⊆ s•.Proof By indu
tion over the size of a subset Y of X. Begin with Y := {t, u} with t#u.By de�nition of # there exists an s ∈ •t ∩ •u ⊆ S.Now assume Y ⊆ X ∧ |Y | > 1 and there exists an s ∈ S with Y ⊆ s•. Take a u ∈ Yand a v ∈ X \ Y with v#u. Then there exists a p ∈ •u ∩ •v by de�nition of #. But then
s• ∩ p• ⊇ {u}. Hen
e either s• ⊆ p• or p• ⊆ s• by the 
ondition of ESPL.In the �rst 
ase Y ∪ {v} ⊆ p•, in the latter 
ase Y ∪ {v} ⊆ s•. This 
an be 
ontinueduntil Y = X. �Conje
ture 5.2

ESPL ( AA(M, B)Proof (Sket
h) Let N = (S, O, ∅, F, M0) be a net and N ∈ ESPL.From Lemma 5.6 we get a single dominating prepla
e for ea
h set of 
on�i
ting transitions.We then de�ne g su
h that mint
g is that singe pla
e.We would need to show that MVP(N) = MVP(AIg(N)). �We also 
onje
ture that the 
lass of asymmetri
ally asyn
hronous nets respe
ting bran
h-ing time is stri
tly smaller than the 
lass of asymmetri
ally asyn
hronous nets respe
tinglinear time.
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5 Asymmetri
 Asyn
hronyConje
ture 5.3
AA(M, B) ( AA(M, L)Similarly we 
onje
ture that the 
lass of tail asymmetri
ally asyn
hronous nets respe
tingbran
hing time is stri
tly smaller than the 
lass of tail asymmetri
ally asyn
hronous netsrespe
ting linear time.Conje
ture 5.4
AA(H, B) ( AA(H, L)The 
lass of tail asymmetri
 asyn
hronous nets respe
ting linear equivalen
e is in
ompa-rable to the 
lass of asymmetri
 asyn
hronous nets respe
ting bran
hing time equivalen
e.Proposition 5.13
AA(H, L) * AA(M, B) ∧ AA(M, B) * AA(H, L)Proof By the 
ounterexamples in Figure 5.6 and Figure 5.7. �The 
lass of symmetri
ally asyn
hronous nets respe
ting bran
hing time equivalen
e isstri
tly smaller than the 
lass of asymmetri
ally asyn
hronous nets respe
ting bran
hingtime equivalen
e.Proposition 5.14SA(B) ( AA(B)Proof A net whi
h has no partially rea
hable N also has no left or right border rea
hableM.The inequality follows from the example in Figure 4.1. �Similarly to what we did in Se
tion 4, we now try to translate Figure 5.8 into an intuitivedes
ription.The 
lasses AA(V, B) and AA(V, L) on the right side are as weakly 
onne
ted as they aresin
e the asso
iated implementations 
annot test whether all pre-pla
es of a transitionare a
tually marked, thereby produ
ing additional tra
es whi
h were not possible in theoriginal net. The resulting net 
lasses are therefore quite small and we didn't think itvery important to map their relation to the other 
lasses.50
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Figure 5.8: Overview of the asymmetri
ally asyn
hronous net 
lassesThe inequality between AA(H, B) and AA(M, B) stems from the ability of AA(M, B) todelay removal of tokens until the visible transition has �red. This usually only works whensaid tokens are guaranteed to stay where they are until the transition �red, a situation
ommonly en
ountered when multiple prepla
es are 
ommon to two transitions. Su
hnets lie not in AA(H, B) sin
e as soon as the �rst token on a shared prepla
e is removedusing a silent transition bran
hing time equivalen
es are violated.No su
h problem o

urs in linear time however, but unfortunately the power of 
hoosingfreely where to insert the visible transition 
an be used to implement 
orner 
ases as theone in Figure 5.6. We don't think there is any meaningful di�eren
e between AA(M, L)and AA(H, L) however.The di�eren
es between AA(M, L) and AA(M, B) and between AA(H, L) and AA(H, B)are 
aused by the possibility of linear time respe
ting implementations to deadlo
k tem-porarily, i.e. a token seems stu
k somewhere in the implementation of an transition, butanother part of the net 
ontinues and �nally resolves the deadlo
k. If the token whi
hseems stu
k 
ould have been used by another transition in the original net, su
h a tem-porary deadlo
k violates bran
hing time equivalen
es, but not linear time equivalen
es.Similar to the di�eren
e between FC and EFC there exists a di�eren
e between ESPLand SPL whi
h originates from the fa
t that ESPL allows small transformations to a netbefore testing whether it lies in SPL. This time however our semanti
ally asyn
hronous
lasses (aside fromAA(H, B)) are large enough to 
ontain the untransformed net stru
turedire
tly, hen
e the in
lusion of ESPL in AA(H, L) and AA(M, B).
51



6 Con
lusions and Related WorkIn this paper we have shown how di�erent grades of asyn
hrony 
an be modelled in Petrinets. We de�ned three substantially di�erent families of semanti
ally 
hara
terized net
lasses. In the �rst family of 
lasses (FSA) it is assumed that removal of tokens happensspontaneously but takes some time to 
omplete. In the se
ond family of 
lasses (SA),these assumptions are held up in prin
iple but transitions whi
h have only one prepla
e
an remove tokens atomi
ally from that single prepla
e. Finally in the third family of
lasses (AA) the transitions 
an 
ontrol the removal of tokens in so far as tokens are onlyremoved in a stati
 sequen
e. We have proven a 
hain of true in
lusions between thosethree families.Furthermore we have shown whi
h of the known Petri net 
lasses 
an be implementedusing whi
h grade of asyn
hrony. Spe
i�
ally we found that free 
hoi
e nets 
orrespondto the se
ond family of net 
lasses and asymmetri
 
hoi
e nets 
orrespond to the thirdfamily.Similar 
onsiderations have already be done in the 
ontext of pro
ess algebras, mainly
π-
al
ulus, lo
ally syn
hronous systems and hardware implementations.In [11℄ Leslie Lamport outlines the basi
 problem of missing absolute time in a system of
ommuni
ating pro
esses. He then derives a total ordering of system-wide events whi
h
an then be used to solve syn
hronization problems. He does not detail the implementa-tion of the pro
esses involved in his systems and lo
al syn
hrony seems to be implied.In [12℄ Leslie Lamport 
onsiders arbitration in hardware and outlines various arbitration-free �wait/signal� registers. He notes that nondeterminism is thought to require arbitra-tion but no proof is known. He 
on
ludes that only marked graphs 
an be implementedusing these registers. Lamport then introdu
es �Or-Waiting�, i.e. waiting for any of twosignals, but has no model available to 
hara
terize the resulting pro
esses.The used 
ommuni
ation primitives bear a striking similarity to our symmetri
ally asyn-
hronous nets. While the Petri nets seem to imply nondeterministi
 
hoi
e in the 
ase offorward bran
hing pla
es, this need not be the 
ase. Sin
e the 
hoi
e in whi
h dire
tionthe token moves is made lo
ally it 
ould as well be done deterministi
ally, for examplealternating.In [16℄ Potop-Butu
aru, Caillaud and Benveniste introdu
e a notion of �weak endo
hrony�whi
h 
hara
terizes lo
ally syn
hronous 
omponents whi
h 
an be 
ombined without 
om-pli
ations into a globally asyn
hronous system. They then 
ontinue to show that weakendo
hrony is preserved by 
omposition, whi
h they hope will make synthesis of weaklyendo
hronous systems easier.52



In [8℄ Frank S. de Boer and Catus
ia Palamidessi 
onsider various diale
ts of CSP with dif-fering degrees of asyn
hrony. In parti
ular, they 
onsider CSP without output guards andCSP without any 
ommuni
ation based guards. Furthermore they also 
onsider expli
itlyasyn
hronous variants of CSP where output a
tions 
annot blo
k, i.e. asyn
hronous send-ing is assumed. Our results are related as they provide further detail between CSP∅ andCSPI . Interestingly our model seems to have no distin
tion parallel to the ACSP/CSPboundary.The one-to-one 
ommuni
ation assumption made in [8℄ when embedding CSPI into ACSPImight be related to the boundary between SA and AA as multiple input-guarded re
eiverstogether with one sender 
an still form an M.In [15℄ Catus
ia Palamidessi shows that some kinds of syn
hronous 
ommuni
ation areimpossible in the asyn
hronous π-
al
ulus, if 
ertain 
onstraints are pla
ed upon theen
odings available. In parti
ular she wants en
odings to be homomorphi
 wrt. parallel
omposition. She then 
ontinues to show that symmetri
 ele
toral systems 
annot beimplemented without mixed 
hoi
e, i.e. the ability to wait both for input and outputpossibilities at the same time.In [9℄ Dianele Gorla investigates di�erent sublanguages of the asyn
hronous π-
al
uluswhi
h are obtained by allowing di�erent features of 
ommuni
ation, namely arity, pattern-mat
hing and �fo-
hannels. He then pro
eeds by detailing whi
h en
odings between theselanguages are possible and whi
h are not. He also enfor
es en
odings to be homomorphi
wrt. parallel 
omposition, thereby ex
luding asymmetri
 en
odings.In [14℄ Uwe Nestmann gives en
odings between various forms of the asyn
hronous π-
al
ulus. Due to the inherent asymmetry of input and output and be
ause of the useof atomi
 transmission of values, the π-
al
ulus setting is non-trivially di�erent from outPetri Net based approa
h. Sin
e our model has stati
 
onne
tivity, it is espe
ially usefulfor low-level hardware designs.In [13℄ Mark Moir des
ribes a 
ommuni
ation s
heme for a set of pro
esses on a multipro-
essor system whi
h want to perform transa
tional 
hanges to di�erent blo
ks of sharedmemory. By 
lever intermingling of rather low-level lo
k and higher level transa
tionmanagement, the proposed s
heme enables truly 
on
urrent exe
ution of pro
esses whi
h
on
urrently read a shared blo
k while ensuring that no two transa
tions whi
h modifythe same blo
k exe
ute in parallel.In [17℄ Wolfang Reisig introdu
es a 
lass of systems whi
h 
ommuni
ate using bu�ers andwhere the relative speeds of di�erent 
omponents are guaranteed to be irrelevant. Theresulting nets are simple nets. He then pro
eeds introdu
ing a de
ision pro
edure for theproblem whether a marking exists whi
h makes the 
omplete system live.The stru
tural net 
lasses we 
ompare our 
onstru
tions to where all taken from [4℄, whereEike Best and M.W. Shields introdu
e various transformations between free 
hoi
e nets,simple nets and extended variants thereof. They use �essential equivalen
e� to 
omparethe behaviour of di�erent nets, whi
h they only give informally. Moreover this equivalen
e53



6 Con
lusions and Related Workis insensitive to divergen
e, whi
h is also relied upon in their transformations. They then
ontinue to show some 
onditions under whi
h liveness 
an be guaranteed for some of the
lasses.In [1℄, Wil van der Aalst, Ekkart Kindler and Jörg Desel introdu
e two extensions toextended simple nets, by allowing test ar
s to violate the ordering of pla
es. This howeverassumes a kind of �atomi
ity� of test ar
s, whi
h we did not allow in this paper. Inparti
ular we don't impli
itly assume that a transition will not 
hange the state of a pla
eit is 
onne
ted to by test ar
s, sin
e in 
ase of deadlo
k, the temporary removal of a tokenfrom su
h a pla
e might not be temporary indeed.In [10℄, Ri
hard P. Hopkins introdu
es the 
on
ept of �distributable� Petri Nets, whereea
h transitions and it's prepla
es must reside on a single 
on
eptual ma
hine, whilethe post-pla
es may reside on another one. He then shows whi
h net stru
tures aredistributable if additional τ transitions are allowed to be inserted before the visible tran-sitions. The resulting net stru
tures 
an be understood to be the 
oarse limit of whatwe des
ribe in this paper. Our paper �lls in mu
h detail whi
h between his 
lasses andfree 
hoi
e nets. Consequently, his paper gives multiple theorem for non-distributabilitywhereas we give the positive results for smaller 
lasses.He uses interleaving semanti
s throughout his paper, and as he himself notes, the dis-tributed implementations of some of the example nets behave di�erently in true 
on
ur-ren
y semanti
s than the original nets, namely they add 
on
urren
y in some 
ases wheretwo transitions share the same prepla
e whi
h is also a post-pla
e of both by dupli
atingsaid pla
e.Another relevant di�eren
e exists between his de�nitions and ours, namely his 
lassi�
a-tions are all stru
tural, in the sense that distributability is not a dependent on the initialmarking. While he gives the (obvious) extension of distributability whi
h depends on theinitial marking, he unfortunately does not give any theorems about it.In [5℄ Lu
 Bougé 
onsiders the problem of implementing symmetri
 leader ele
tion in thesublanguages of CSP obtained by either allowing all guards, only input guards or onlyunguarded 
hoi
e. He �nds that the possibility of implementing it depends heavily onthe stru
ture of the 
ommuni
ation graphs, while �truly� symmetri
 s
hemes are onlypossible in CSP with input and output guards. These results should be transferable intoour framework by relating the 
lass SA to CSP without guarded 
hoi
e, and the 
lass AAwith CSP with only input guarded 
hoi
e.Similarly in [6℄ Lu
 Bougé improves upon a distributed snapshot algorithm by Chandy andLamport, adding the possibility to take repeated snapshots and still using only boundedstorage. His algorithm ensures non-interferen
e of di�erent snapshot rounds by means ofsyn
hronous 
ommuni
ation. Indeed his implementation uses input and output guardsin the same 
hoi
e, leading to stru
tures outside of AA(H, L), and is therefore not easilyextendible to asyn
hronous systems.However there is still mu
h room for resear
h in the topi
 of asyn
hronous systems. We54




onje
ture that, even for ready equivalen
e, it will not be possible to �nd an equivalenten
oding of general syn
hronous systems into asyn
hrony, even if symmetry and homo-morphism wrt. parallel 
omposition are not required properties of the en
oding (work inprogress).However, these restri
tion seems not to o

ur in linear time semanti
s, and an en
odingof general Petri nets into some 
lass of asyn
hronous nets should be possible, if theequivalen
e is su�
iently 
oarse. The ne
essary 
lass of asyn
hronous nets seems tobe still a bit more syn
hronous than the three 
lasses introdu
ed in this paper (work inprogress).Another interesting problem is to 
reate the 
onne
tion from our Petri net based modelto real hardware. Most probably, the di�erent grades of asyn
hrony will result in di�erentperforman
e 
hara
teristi
s of their hardware implementations. It might be interesting to
reate hardware implementations of the various transition types we introdu
ed and ben
h-mark those, but even more interesting it seems would be to apply the knowledge obtainedthrough our models and try to make new more asyn
hronous 
hip designs, thereby im-proving performan
e.Furthermore, standard distributed algorithms 
ould be 
lassi�ed by their implementabilitywithin the various asyn
hronous models, thereby 
reating some 
ommon ground betweenthe various 
on
epts of asyn
hrony o

urring in di�erent papers.
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